UNIVERSIDAD DE CONCEPCIÓN, CENTRO DE ÓPTICA Y FOTÓNICA
Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia -CONICYT
March, 10 to 13, 2014
REPORT of activities during this workshop - (PDF)
Antonieta Silva, CEFOP - Chile
Daniel Nisperuza, UNAL - Colombia
Fabio Lopes, IPEN - Brasil
Henrique Barbosa, USP - Brasil
Pablo Ristori, CEILAP - Argentina
Our friends from Earlinet have provided datasets for us to try our algorithms.
Profiles used for the first Earlinet paper on the elastic retrievals (Bockmann et al, App. Opt. 2004)
Signals for 355, 532 and 1064 nm and input P, T download
P and T with better format download
pressure = hPa
temperature e dew point = degC
lidar ratio = sr
altitude = m
Noise and background added to the input signal as Signal -> Poissrnd(Signal + BG). Columns are: alt, 355, 532 and 1064. This is wrong because the original signal is very small at the end and the Poisson() will result in single values.
Bg=1e6, 1e4, 1e2, and 1e0 -- download holger-bg.zip
Noise and background added to the input signal as Signal -> Poissrnd(1000*(Signal + BG)). Columns are: alt, 355, 532 and 1064.
Bg=1e8, 1e7, 1e6, 1e5, 1e4, 1e3, 1e2, 1e1, and 1e0 -- download holger-poisson.zip
Profiles used for the raman Earlinet paper (Pappalardo et al, 2004)
Signals for 355, 387, 532, 608, 1064 download input and output
Pablo Ristori (Ceilap - Argetina) also provided a simulated dataset. This is more complicated as it includes clouds and aerosols. Input is only available for 355nm at the moment. Two versions are available:
Strong cloud - download input
Input is: 1- altitude and 2 - signal at 355nm
Cloud at 6km LR=28 and beta ~= 280 Mm^-1 sr^-1 (Cloud optical depth = 1.0)
BL Aerosols up to 1.5km, LR=28, beta = 5 Mm^-1 sr^-1
Residual aerosols, LR=28, beta = 0.5 Mm^-1 sr^-1
Weak cloud - download input and output
Input is: 1- altitude and 2 - signal at 355nm
Cloud at 6km LR=28 and beta ~= 57 Mm^-1 sr^-1 (Cloud optical depth = 0.2)
BL Aerosols up to 1.5km, LR=28, beta = 5 Mm^-1 sr^-1
No residual aerosols
Alternative input with extra noise and background
Bg=1e6, 1e4, 1e2, 1e0 -- download ristori-bg.zip
The output of your algorithms should produce simple ascii files without header and columns separated by TAB with the following columns:
height = m
backscatter = 1/Mm / sr
extinction = 1/Mm
lidar ratio = sr
molecular backscatter = 1/Mm / sr (step 3)
molecular extinction = 1/Mm (step 3)
synthetic molecular signal = 1/m / sr /m2 (step 3)
Böckmann, C., Wandinger, U., Ansmann, A., Bösenberg, J., Amiridis, V., Boselli, A., … Wiegner, M. (2004). Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 2. Aerosol Backscatter Algorithms. Applied Optics, 43(4), 977. doi:10.1364/AO.43.000977
Pappalardo, G., Amodeo, A., Pandolfi, M., Wandinger, U., Ansmann, A., Bösenberg, J., … Wang, X. (2004). Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 3. Raman Lidar Algorithm for Aerosol Extinction, Backscatter, and Lidar Ratio. Applied Optics, 43(28), 5370. doi:10.1364/AO.43.005370