Synergy between multichannel Raman Lidar system and spaceborne remote sensing platforms applied to study aerosol optical properties at Metropolitan Area of São Paulo – Brazil

Fábio J. S. Lopes Gregori A. Moreira, Felipe V. Araujo, Maria F. Andrade and Eduardo Landulfo

> University of São Paulo – USP Institute of Astronomy, Geophysics and Atmospheric Sciences - IAG Nuclear and Energy Research Institute – IPEN Center for Lasers and Applications - CLA

fabiolopes@usp.br

Metropolitan Area of São Paulo (MASP)

- ✓ 85% light-duty vehicles
- ✓ 6% heavy-duty vehicles
- √9% motorcycles
- ✓ Unique fleet ethanol or gasoline-ethanol mixture

- \checkmark More than 20 millions of inhabitants
- ✓ Several sources of particulate matter pollution
- ✓ Main source: Automotive fleet ≥ 8 millions of vehicles
- ✓ Automotive fleet contributes to degrade of air quality at MASP
- ✓ Especially during the winter/dry season

MASP air quality monitoring

- Automotive fleet contributes to degrade of air quality at MASP
- ✓ Especially during the winter/dry season
- Highly favorable for air pollutant accumulation during episodes of intense temperature inversions
- ✓ Hourly air quality data provided by São Paulo Sanitation Technology Company (CETESB)

NO _x				
AIR QUALITY INDEX				
Air Quality Index (AQI) Values	Levels of Health Concern			
0 to 50	Good			
51-100	Moderate			
101-150	Unhealthy for Sensitive Groups			
151-200	Unhealthy			
201-300	Very Unhealthy			
301 to 500	Hazardous			

O₃

SO₂

NO

NO₂

 $PM_{2.5}$

PM₁₀

MASP air quality monitoring

Local pollution \Rightarrow increase the particulate matter concentration

In some cases \Rightarrow related to the advection of aerosols transported from longrange distance areas

Range corrected lidar measurements for 10th and 12th of September 2012

Elastic backscatter and Raman Lidar system

Remote sensing instruments

Nd YAG laser —	120 mJ @ 532 nm		
CFR200		Elastic backscatte	er and Raman Lidar system
Channels	532 nm (FWHM 0.5 nm) 607 nm (FWHM 1.0 nm)	Nd:YAG laser – Brilliant B	400 mJ and 230 MJ @ 532 and 355 nm
PMTs /ertical Resolution	Hamamatsu R9880U-110 7.5 m		532 nm (FWHM 1.0 nm) 607 nm (FWHM 0.25 nm)
	Channels	660 nm (FWHM 0.25 nm) 355 nm (FWHM 1.0 nm) 387 nm (FWHM 0.25 nm) 408 nm (FWHM 0.25 nm)	
	PMTs	Hamamatsu PM-HV-P03-R7400 / PM- R9880-20	
		Vertical Resolution	7.5 m
Products	✓ Aerosol backscat	ter profiles (β) \checkmark	Lidar ratio profiles (LR)

 \checkmark Aerosol extinction profiles (α)

✓ Water vapor profiles

Remote sensing instruments

<u>CALIPSO - Cloud Aerosol Lidar and</u> <u>Infrared Pathfinder Satellite Observation</u>

Launched in 2006 NASA and CNES collaboration

CALIOP - Cloud Aerosol Lidar with Ortogonal Polarization

Level 1 data

Level 2 data

Total attenuated backscatter profiles at 532 nm

Aerosol and clouds profiles

Aerosol Optical Depth AOD at 532 nm

Number of aerossol layers

Aerosol subtype

AERONET Sunphotometer

AQUA satellite - MODIS instrument Moderate Resolution Imaging Spectroradiometer

Aerosol Optical Depth at 550 nm from atmosphere Level 2 aerosol products 51 Modis Collection 10 km AOD data resolution Selected area: 40 x 40 km

- Aerosol optical Depth (AOD at 532 nm interpolated)
- Angstrom Exponent
- Lidar ratio

Focus fire in the Brazilian territory

Focus fire increases \Leftrightarrow increases the AOD and particulate matter concentration

Focus fire in the Brazilian territory

CALIPSO Aerosol type according to dry and wet season over MASP on the period of 2011-2014

Aerosol measurement campaign: July to September of 2012

Fire spots from July to September of 2012

https://earthdata.nasa.gov/data/near-real-time-data/faq/firms

Investigating the scenario at Mid-Western and North of Brazil

Investigating the scenario at Mid-Western and North of Brazil

Increasing of fine mode aerossol

✓ Lidar ratio CALIPSO – 70 sr

✓ Lidar ratio from AERONET ~ 70 sr

✓ Biomass burning aerosol

HYSPLIT five-day backward trajectories

*

*

- **Global Data Assimilation** \checkmark System
- air masses backward trajectories starting at 12, 15, 18 and 21 UTC
- ✓ from 1000 to 4000 m altitude
- trajectories from 1000 to 2500 m a.g.l. altitude came originally from North and North-Western direction.
- trajectories from 3000 to 4000 \checkmark m a.g.l. came originally from **Central-Western part of Brazilian territory**

MSP-Lidar II system measurements

- ✓ Lidar system measurements at September 10th of 2012
- ✓ PBL height calculated by WCT and Grad-log methods
- ✓ Air masses backward trajectories at 3000 to 4000 m a.g.l. came originally from Central-Western part of Brazilian territory
- ✓ Aerosol plumes above PBL

MSP-Lidar II system measurements

Particulate backscatter, extinction and Lidar ratio profiles at 532 nm for September 10th of 2012 at MASP

/ Large quantities of aerosol up to 3000 m and thin aerosol layers above 3000 m

- Lidar ratio ranging between 60-70 sr at 3000 to 4000 m
- Biomass burning transported from central-Western of Brazilian territory

MSP-Lidar II system measurements

Particulate backscatter, extinction and Lidar ratio profiles at 532 nm for September 10th of 2012 at MASP

Relative humidity contributes to increase the backscatter coefficient

- Biomass burning transported from central-Western of Brazilian territory above 3000 m altitude
- Low relative humidity above 3000 m

Conclusions

- ✓ Sinergy between satellite and ground-based systems is important to constrain physical and optical properties of aerosol.
- ✓ Increasing of fires focus and AOD during the period of September of 2012 at Central-Western region of Brazil
- ✓ Biomass burning advected to São Paulo according to HYSPLIT backward trajectories at 3000 to 4000 m of altitude
- Aerosol layers detected above the PBL at 3000 to 4000 m of altitude using MSP-Lidar II system
- ✓ Lidar ratio between 60 to 70 sr
- ✓ Large increasing of particulate matter concentrarion and AOD during this period of September of 2012 at MASP can be associated to the transport of biomass burning from Central-Western region of Brazil

Acknowlegments

This work was supported by FAPESP (Fundação da Amparo à Pesquisa do Estado de São Paulo) through the grant projects 2011/14365-5 and 2008/58104-8.

The authors would like to thank the support and data from the following agencies and research teams

The organizing committee

