

Laboratórios de Engenharia de Processos de Conversão e Tecnologia de Energia

Lidar measurements validation under coastal condition

Pedro Alvim A. Santos, Yoshiaki Sakagami, Reinaldo Haas,

Júlio C. Passos, Frederico F. Taves

April 9th, 2014 Lidar applications for environmental sciences VIII Workshop in Lidar Measurements in Latin America Cayo Coco, Cuba

- 3-years R&D Project UFSC-IFSC-Tractebel Energia S.A. (GDF Suez);
- EUR 800,000.00 (Hardware + Software + HR) from 2011 to 2014;
- Short-term (72h) wind power forecasting software;

- Lidar technology being used in wind energy applications;
- > Data validation under distinct atmospheric conditions;

- Few studies with long-term measurement campaign (1 year or more);
- > Validate seasonal effects and winds at coastal conditions;
- Minimize the drawbacks of being an end-user;

> Experiment set at the Brazilian northeast coast;

XIII WLMLA

- > Inside Pedra do Sal Wind Farm: 18MW of installed capacity;
- > Windcube® 8 lidar and a 100m meteorological mast;

> Lidar and tower: 150m upwind the turbines and 300m from the shoreline;

> The wind turbines array is aligned with the coast and with the prevaling wind;

> Measurement equipments are 565m apart each other;

East North Cosce cart

Sakagami, Y et al. Wind shear assessment using wind LIDAR profiler and sonic 3D for wind energy applications – Preliminary Results. In: XIII World renewable Energy Congress. London, 2014.

XIII WLMLA

- > Manufacturer: Leosphere (France)
- > Model: Windcube® 8
- Consumption: 400W (LiDAR), 800W (A/C)
- > Weight: ~100kg + 100kg (A/C)
- > Dimensions: 950x650x550mm
- Connection: GSM and Ethernet
- > Final Cost: ~EUR 170,000.00

- > Vertical Range: 40m to 500m
- > Vertical Resolution: 20m
- > Time Resolution: ~6s (360° scan)
- > Wind data: 10min average
- > Wind speed range: 0 to 60 m/s
- > Accuracy: < 0.3 m/s</p>
- > Prism angle: 14.8°
- ≻ Laser: 1.543µm
- > Measurement: VAD

(velocity-azimuth display)

XIII WLMLA

Velocity-azimuth display (VAD):

- > Three measurements needed for distinct Line of Sight (LOS);
- > 4th LOS is the averaged of last three;
- Fixed elevation (Φ=75.2°): function of prism angle;
- No measurement of real vertical velocity (complex terrain);
- > Azimuth (θ): North (0°), East (90°), South (180°), West (270°).

$$\begin{bmatrix} V_{LoS,1} \\ V_{LoS,2} \\ V_{LoS,3} \end{bmatrix} = \begin{bmatrix} \sin\theta_1 \cos\phi_1 & \cos\theta_1 \cos\phi_1 & \sin\phi_1 \\ \sin\theta_2 \cos\phi_2 & \cos\theta_2 \cos\phi_2 & \sin\phi_2 \\ \sin\theta_3 \cos\phi_3 & \cos\theta_3 \cos\phi_3 & \sin\phi_3 \end{bmatrix} \cdot \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

XIII WLMLA

- > Dataset covers a continuous 1-year period from August 2013 to September 2014;
- Five wind speed lidar levels are compared with met mast: 40m, 60m, 80m, 100m and 100m from a 3D sonic anemometer;
- > 10min average data is used only with 100% data availability from the LiDAR;
- > The behavior of the wind speed bias is analyzed (skewness and kurtosis);
- **Recovery rate** for Lidar data reached 66% up to 400m for the 1-year period;
- > Met mast data presented na average recovery rate of 99,97%.

- > Lidar presented a systematic underestimation (bias) of tower wind speed;
- Increasing bias for high wind speed values, see also Risø (2010) and CRES (2011);
- > Non-linear behavior of bias with wind speed values.

- > The bias is higher than the manufacturer threshold (< 0.3 m/s) for all evaluated lidar heights. Confirmed by a high kurtosis and negative skewness (see table);
- > Good correlation between lidar and tower for all heights;
- > 3D sonic anemometer used as reference with cup anemometry at met mast;

Height	40m	60m	80m	100m	Sonic
Bias	-0.44	-0.43	-0.38	-0.41	0.21
Skewness	-0.49	-0.44	-0.18	-0.43	0.00
Kurtosis	5.77	5.50	5.45	6.04	2.93
RMSE	0.62	0.61	0.57	0.57	0.25
Slope	0.94	0.95	0.96	0.95	1.04
R ²	0.97	0.97	0.97	0.98	1.00

- > Wind lidar presented a fair correlation with reference met mast during a continuos 1-year measurement campaign;
- > The significant bias identified can be related with atmospheric conditions (next presentation);
- > Reprocessment of raw spectra can be helpfull (*.dsp files);
- Source of such deviations are open for discussion;

Power output 3% difference spotted in operational power curve with lidar wind speed;

Santos, P. A. A. et al. Monitoring power performance of operational wind farms using LiDAR wind profiler. In: **AWEA Windpower 2015**, Orlando, 2015 (*accepted*).

XIII WLMLA

Laboratórios de Engenharia de Processos de Conversão e Tecnologia de Energia

MSc. Pedro Alvim A Santos

Research Engineer LEPTEN/UFSC Florianópolis, Brazil

pedroasantos@lepten.ufsc.br

Acknowledgments:

XIII WLMLA