Retrieval of particle microphysical properties for
different aerosol types with LIRIC algorithm
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ABSTRACT: This work presents a characterization of three different aerosol types in terms of their microphnysical properties, 1or several events registered at the EARLNET 1] Granada station (37.16° N, 3.61°
VW, 680 m asl) during July 2013, A preliminary analysis of the aeroscl optical properties, presented in a previous work [2], has been used to make a classification of the aerosol types forming the detected
olumes. Backward trajectories analysis with HYSPLIT [3] model to identity the origin of the air masses arrving at our station and modeling tools as NAAPS 4] and BSC-DREAMED 5] have been used as ancil-

ary iInformation. According to those data, the presented cases correspond to mineral dust particles coming from Sahara Desert, biomass burning particles transported from Canadian forest fires, and mixed
ayers containing antnropogenic pollution. The study has involved lidar data processing for both Raman and elastic lidar signals and also combined analysis of sun-photometer AERONET [6] data and elastic
oar signal using LIRIC [7] algorthm. The results evidence a large concentration of fine mode particles in the biomass-buming aerosol layers, whereas for Saharan dust layers, the largest concentration values

were obtained 1or the coarse mode, In particular for the non-sphnerical fraction. Layers with anthropogenic or with mixed aerosal layers were tound to exnioit a nyorid benavior,
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—lastic and Raman lidar signals were analyzed In order to
retrieve vertically resclved particle optical properties.

RESULTS

Ihree direrent situations are presented nere to Ilustrate distinct aerosol scenarios. Accoraing to a
orelminary classification using tackward trajectories and torecast models, we expected to 1nd min-
eral dust particles on July, 1st; biomass buning particles transported from North American torest
fires on July, 14th, and mixed layers containing anthropogenic regional pollution on July, 1/7tn.
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Columnar size distrioutions were retrieved from
the sun-photometer using AERONET code
Coarse mode dominated on July 1st, when
total AOD was 0,40 (at 500 nm) with 68% as-
soclated to coarse particles. On July 14th, to-
tal AOD barely exceeded O.1, but the size dis-
froution exniorts a clear tencency towaros 1ne
mode. For July 17th, the contrioution of both
modes to the total AOD was around 50%.
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Combination of lidar and sun-photometer data used to calculate particle microphysical properties
with LIRIC algorthm [7]. Volume concentration orofiles were obtained for the fine and the coarse
mode, distinguishing between spherical and non-spnerical (or spheroidal) gartides.
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NCLUSIONS

- Sinergy between multiwavelength vertically-resolved ogtical proflles retrieved from lidar data and column integrated microphysical properties from sun-
ohotometer measurements provides the inout for the retrieval of vertically-resolved particle microphysical properties with LIRIC [ 7] algorthm

- Coarse spheroid mode volume concentration values up to 58 ume/cm® (~ 8/7% of the total particle volume concentration) were found coinciding with
the highest backscatter and extinction coeflicients values for the mineral dust layer. This Is in agreement with Angstrom exoonents (Ak) around O ano

inear particle dep. ratios (LPDR) around O.2.

-Fne mode with volume concentration values more than 20 um-=/cm® (corresponding to 98%) were attriouted to the peaks of optical properties for the

oumMiNg bioMass case, Wnose At were around 2 and LFDR less t

nan O, 1.

-he layer with local and regional anthropogenic pollution, which is coupled with the planetary boundary layer, shows volume concentration values
around 6 um-/cm? for the three size modes, higlighting the hybrnd behavior of the layer. These results are in agreement with the backward trajectories
analysis and the particle optical properties: Az around 1 and LPDR around 0,15,
- In the future, more cases of similar aerosol type events wil be analyzed with LIRIC, what will allow for infernng statistical behavior of the aerosal plumes

over GGranada.
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