

Assuring data quality across a diverse aerosol lidar network: the EARLINET experience

Adolfo Comerón

RSLAB

Department of Signal Theory and Communication

Universitat Politècnica de Catalunya – BarcelonaTech (UPC)

Indebted to the work of

Volker Freudenthaler, Giuseppe d'Amico, Christine Böckmann, Gelsomina Pappalardo, Aldo Amodeo, many others and all the EARLINET community....

EARLINET as of end of 2014

3+2 (+...) stations

- (aerosol typing, microphysics): 17
 - Raman lidars (extinction profiling): 7
- Backscatter lidar: 4
- Depolarization channel (aerosol typing): 18
 - Collocated sunphotometer: 21
- Stand-by stations: 2
- New stations: 3

EARLINET

- EARLINET: <u>European Aerosol Research Li</u>dar <u>Net</u>work (<u>http://www.earlinet.org</u>)
- Aim: to establish an aerosol climatology at continental scale
- Started in 2000 as a project of the European Union's 5th Framework Programme (2000-2003).
- Continued under FP6 EARLINET-ASOS project (2006-2011)
- Integrated into "<u>A</u>erosol, <u>C</u>louds and <u>T</u>race gases <u>R</u>esearch <u>I</u>nfrastructure network" (ACTRIS) since 2011 under FP7 project, continued in 2015 under Horizon 2020 project (<u>http://www.actris.eu</u>)
- ACTRIS has applied to become a permanent European research infrastructure

EARLINET as of end of 2014

3+2 (+...) stations

- (aerosol typing, microphysics): 17
 - Raman lidars (extinction profiling): 7
- Backscatter lidar: 4
- Depolarization channel (aerosol typing): 18
 - Collocated sunphotometer: 21
- Stand-by stations: 2
- New stations: 3

A d network ", Atmos. Meas. Tech. 7, pp. 2389-2409, 2014

Challenge: how to maintain a uniform – and good! – quality of data throughout such a diverse network?

Quality assurance

Quality assurance

Intercomparison of inversion algorithms

- Based on synthetic, yet realistic, lidar signals corresponding to a given scenario and simulating the outputs of different lidar channels
- These signals are distributed to the researchers in charge of the retrievals of atmospheric coefficients, along with information of ground-level pressure and temperature
- Participants must produce optical coefficients using their own algorithms
 - First without any other piece of information
 - Then giving additional information on the molecular atmosphere and the aerosol

Checks also operator's expertise

Focuses on the algorithm implementation

Synthetic elastic signals distributed at 355 nm, 532 nm and 1064 nm

Initial information: P and T at ground level Synthetic Raman signals distributed at 387 nm and 607 nm

1st stage: retrieve backscatter coefficients with elastic algorithms

2nd stage: retrieve extinction and backscatter coefficients at 355 and 532 nm with Raman algorithms

Added information: Ångström exponents, P and T profiles, reference values for backscatter coeff. at 355 nm and 532 nm

Added information: Lidar ratio profiles

4th stage: retrieve backscatter coefficients with elastic algorithms 3rd stage: retrieve extinction and backscatter coefficients at 355 and 532 nm with Raman algorithms

EARLINET

INTERCOMPARISON OF ELASTIC ALGORITHMS DATA PROVIDED TO PARTICIPANTS **Elastic signals** 30 30 30 25 25 25 532 nm 1064 nm 355 nm 20 20 20 Altitude (km) Altitude (km) Altitude (km) 15 15 15 10 10 10 5 5 5 2 2 2 'n n Range-corrected signal (a.u.) Range-corrected signal (a.u.) Range-corrected signal (a.u.) Source: G. Pappalardo

A CINIS \

EARLINET

INTERCOMPARISON OF ELASTIC ALGORITHMS

1st stage

4th stage

INTERCOMPARISON OF ELASTIC ALGORITHMS

1st stage

4th stage

INTERCOMPARISON OF ELASTIC ALGORITHMS

1st stage

A

TRiS

INTERCOMPARISON OF RAMAN ALGORITHMS DATA PROVIDED TO PARTICIPANTS Raman signals (in addition to elastic ones)

INTERCOMPARISON OF RAMAN ALGORITHMS

2nd stage

WIII Workshop on Lidar Measurements in Latin America , Cayo Coco, Cuba, 7 April 2015

TRIS

AC

INTERCOMPARISON OF RAMAN ALGORITHMS

SLAB

SLAB

2nd stage

A©TRiS

INTERCOMPARISON OF RAMAN ALGORITHMS

SLAB

3rd stage

532 nm

TRiS

A

... and spatial resolution

WIII Workshop on Lidar Measurements in Latin America , Cayo Coco, Cuba, 7 April 2015

AC

TRi

Summary

- Tests of inversion algorithms allow detecting problems and making users aware of good practices
- Every new EARLINET member is required to undergo the tests
- Eventually, expertise in inversion flows to the single calculus chain

- Software for automated processing of data obtained by EARLINET systems
- Intended to avoid inconsistencies in the signal inversion and error estimates (error bars) and to automate retrievals
- To cope with such different systems, data must be submitted in NetCDF subjet to strict and well defined format
- Because format is very well defined, it can be extended to systems beyond EARLINET (GALION) as far as the data are provided sticking to the required format and channels have undergone the instrument quality checks

SCC layout

WIII Workshop on Lidar Measurements in Latin America , Cayo Coco, Cuba, 7 April 2015

Ri

SCC inversion example

EARLIN

SCC products

- Aerosol backscatter coefficient by elastic methods
- Aerosol extinction coefficient by Raman method
- Aerosol backscatter coefficient by Raman method

Coming up:

- Particle linear depolarization ratio
- Automatic aerosol layer detection
- Automatic cloud masking

Great challenge:

- SCC must operate in a completely automated, unattended way: Still in testing
 - Screen out poor-quality data
 - Detect clouds

mode

SCC Web Graphic Interface

HOME / DATA PROCESSING

Explore
Search Measurements
Ancillary files
Actions
Quick Upload
Upload Ancillary

Data processing overview

In the data processing section you can upload lidar measurements to be processed, monitor the processing procedure, and download the output products. Use the links in the "*Explore*" section of the menu to search for already processed measurements and browse the related ancillary files. Use the links in the "*Actions*" section to upload new measurements and ancillary files. Before using these options be sure to set-up your system and product parameters in the Admin section.

Recently updated measurements

Id	Uploaded on	Last update	Status
20150122ba02	2015-03-11 14:58 UTC	3 weeks ago	📥 🌣 🖂
20150219ba00	2015-03-09 10:53 UTC	3 weeks, 2 days ago	📥 🌣 🖂
20150212ba01	2015-02-17 14:59 UTC	1 month, 1 week ago	≟‡⊠

SCC Web Graphic Interface

adolfo.comeron

SCC station management Back to the site

Home

Site administration

Systems settings			
General settings about stations, systems and their varius components.			
HOI stations	+ Add	∃ Change	
HOI systems	+ Add	∃ Change	
HOI telescopes	+ Add	∃ Change	
HOI lasers	+ Add	∃ Change	
HOI channels	+ Add	∃ Change	
Laser emission lines	+ Add	∃ Change	
System photos	+ Add	∃ Change	
Product settings			
Settings about the optical products that will be calculated.			
Products	+ Add	∃ Change	
Measurements and files			
Advanced controls for the already uploaded measurement	is and files	i.	
Measurements		∃ Change	
Sounding files		∃ Change	
Lidar ratio files		∃ Change	
Overlap files		∃ Change	

S	upport
7	SCC documentation
7	Forum
R	ecent Actions
×	ID: 20150125ba00, Station: ba, Start: 2015-01-25 00:50:52 Measurement
=	ID: 20141208ba00, Station: ba, Start: 2014-12-08 00:45:27 Measurement
=	68: UPCLidar_new, nighttime HOI system
=	ID: 20141222ba01, Station: ba, Start: 2014-12-22 16:58:45 Measurement
=	ID: 20150108ba01, Station: ba, Start: 2015-01-08 17:11:42 Measurement

SCC Web Graphic Interface

Single Calculus Chain	Data processing	Handbook of Instruments	Station Admin	Logout	
Handbook of instruments					
HOME / HANDBOOK OF INSTRUMENTS					

Explore

Stations

About

Stations	2
Stations	2

Station	Systems
ALOMAR	1
National Technical University of Athens	1
Barcelona-Universitat Pol. de Catalunya (UPC)	3
Belsk, Poland	3
Bilthoven - Rijksinstituut voor Volksgezondheid en Milie (RIVM)	1
Bucharest-National Institute of R&D for optoelectronics INOE 2000	2
Cabauw - Royal Netherlands Meteorological Institute (KNMI)	1
Cluj (Romania intercomparison campaign)	1
Clermont-Ferrand – OPGC	1

Hardware Quality Assurance

Direct system intercomparison

- Systems compared against a standard system looking at the same atmosphere
- Ideal way for hardware quality assurance
- Expensive: it involves moving the systems under test or the standards

 → for a given system can only be made once every xx years, or when it has undergone a major upgrade
- Virtually all the EARLINET systems have been compared to a standard system

- Way of keeping quality in the time between direct intercomparisons
- Two kind of checks:
 - Those that need be performed only once if no change has been made in the system
 - Tests that are requested to be performed at least once a year

Direct system intercomparison

- Currently three standard systems in EARLINET
 - MULIS (Munich)
 - POLIS (Munich)
 - MUSA (Potenza)
- Intercompared against each other in EARLI09 campaign (Leipzig, 11-31 May 2009)
- Intercomparison campaigns are organized in sessions
 - Results from a session are quickly analyzed to detect possible problems and provide feedback
 - Single calculus chain has been used in latest campaigns to perform the analysis to quickly provide feedback and to avoid inhomogeneity due to software
 - Intercomparison carried out on channel (rather than on system) basis

Example: SPALI10 intercomparison campaign

18 October- 5 November 2010. CIEMAT (Madrid, Spain)

18 October- 5 November 2010. CIEMAT (Madrid, Spain)

Example: SPALI10 intercomparison campaign

26 October 2010. CIEMAT (Madrid, Spain)

Example: SPALI10 intercomparison campaign

1 November 2010. CIEMAT (Madrid, Spain)

Example: SPALI10 intercomparison campaign

Mandatory internal checks

- One time (only if the configuration has changed):
 - Trigger delay / zero bin
 - Dark measurement
- Periodic (at least once a year)
 - Telecover test
 - Rayleigh fit
 - Depolarization calibration (only linear depolarization is considered for the moment)
- Important role of hardware quality assurance coordinator (Volker Freudenthaler), who collects and analyzes the test data submitted by stations, and provides feedback

• Checks the time difference between the light pulse emission and the start of the signal acquisition

 Checks the time difference between the light pulse emission and the start of the signal acquisition

• Example of trigger delay effect (taken from an intercomparison campaign with POLIS system as standard)

Source: M. Iarlori, V. Rizi, V. Freudenthaler

• If acquisition start leads laser emission

No paper sheet

Paper sheet

Laser emission occurs 26 x 25 ns = 650 ns after signal acquisition started

No paper sheet

Paper sheet

Laser emission occurs 17 x 25 ns = 425 ns after signal acquisition started \rightarrow photoncounting branch acquition starts 225 ns later tan analog one

 Checks the time difference between the light pulse emission and the start of the signal acquisition

• If acquisition start lags laser emission

 Checks the time difference between the light pulse emission and the start of the signal acquisition

Mandatory one-time internal checks

- Checks for electronics-induced interferences in the analog signals
- Performed with all the system in nominal operation state (including laser pulsing), but telescope blocked
- If noticeable interference occurs, it must be subtracted from analog signals before retrieval procedure

Raw measurement: telescope open (average of a number of points at the end of the acquisition subtracted for displaying purposes)

Dark measurement: telescope blocked (average of a number of points at the end of the acquisition subtracted for displaying purposes)

Corrected measurement: raw measurement – dark measurement

- Dark-measurement subtraction cancels systematic synchronous interferences, but not random noise
- Penalty: final S/N

$$\frac{S}{N} = \frac{S}{N_r + N_d}$$

- N_r: random noise power in raw measurement
- N_d: random noise power in dark measurement
- To ease the S/N penalty spatial smoothing can be applied to the dark signal at far ranges

• To limit interferences ground loops should be avoided (not always easy or even possible)

• To limit interferences ground loops should be avoided (not always easy or even possible)

Dark measurement Measures to limit interferences:

Avoid obvious ground loops

- Keep the photoreceivers as far as possible from the laser
- Keep cables as short as possible:

$$\mathcal{E} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathrm{S}} \vec{\mathrm{B}} \cdot \mathrm{d}\vec{\mathrm{s}}$$

- Use mains filters: some interference can arise from power line instabilities induced by current drawn by laser power supply
- Magnetic shielding (high permeability materials) of interferences sources (?)

Telecover test

• Checks for misalignments, vignetting, detector surface inhomogeneities and saturation effects that may affect the response in the near range of the lidar

Telecover test

• Simplified rationale

Telecover test

• Simplified rationale

Telecover test

• Simplified rationale

Telecover test

• Simplified rationale

Telecover test

 Simplified rationale: blocking different parts of the telescope we check to which extent rays passing through the free aperture make it through the field stop

Telecover test

 Simplified rationale: blocking different parts of the telescope we check to which extent rays passing through the free aperture make it through the field stop

Telecover test

• Simplified rationale

Telecover test

• Simplified rationale

Telecover test

• Practical implementation

- East and West should ideally give the same response
- All the responses should coincide when full overlap is attained
- In general applied on signals normalized on a given range

Figure from V. Freudenthaler, "The telecover test: A quality assurance tool for the optical part of a lidar system", Reviewed and Revised Papers presented at the 24th International Laser Radar conference, Boulder (CO) USA, 2008

Telecover test

Well aligned system

Telecover test

Not so well aligned system...

Source: V. Freudenthaler

Rayleigh fit

- Checks for alignment and interference residuals in the far range
- Principle: in an aerosol-free atmosphere the signal should follow a law dictated by Rayleigh scattering
- If nearby radiosonde pressure and temperatura data are available, comparison is made against molecular atmosphere retrieved from these data

Mandatory periodic internal checks

Rayleigh fit

Rayleigh-Fit UPC 11.12.14 UPC_MRL 532 nm xtg, normalised signals

Source: V. Freudenthaler

Mandatory periodic internal checks

Rayleigh fit Possible diganostic

Polarization calibration

- Necessary to determine the ratio between the instrument constants of the two detection channels involved
- This ratio is obtained as the geometrical mean of P_⊥/P_{||} when the polarized part of the incoming radiation is at +45° and -45° from the measurement position (see ref. of the figure)
- Chek is done in the Rayleigh region to test if depolarization values of molecular atmosphere are found
- Details may depend on the specific configurations

Why is it important?

• Lidar photodetector output is essentially an impulse

Why is it important?

- Lidar photodetector output is essentially an impulse
- Transients associated to acquisition electronics may severely impair the acquired signal

What is needed to test?

- Pulse generator providing sharp and clean falling edge
- Even good general purpose commercial function generators may not be good enough

Measurement with general purpose function / waveform generator*

Measurement with especially designed (MIM-IfT) pulse generator*

Falling edge of 1 V, 4.5 μs pulse

0V-1 V, 4.5 μs pulse

Example of problem with impulse response (I)

Example of problem with impulse response (II)

- Tool to provide a homogeneous framework to a diverse infrastructure
- Transmitter and receiver described in a precise way that allows traceability in case of anomalies
- Logical link between quality assurance of hardware and software: the Handbook of Instruments is assimilated into the SCC database
- Updated in case of system modifications / upgrades

Register organization

System identification System location Principle investigator Valid date													
Emitter													
Laser 1 parameters Laser 2 parar			meters		L		Laser n parameters						
Receiver													
Telescope 1 parameters			Telescope 2 parameters				Telescope n pa	arameters	ameters				
Channel 1 optical parameters	Channel 2 optical parameters		Channel n optical parameters	Channel 1 optical parameters	Chann optica param	1		Channel n optical parameters		Channel 1 optical parameters	Channel 2 optical parameters	hannel 2 etection	Channel n optical parameters
Channel 1 detection parameters	Channel 2 detection parameters		Channel n detection parameters	Channel 1 detection parameters	Chann detect param	ion		Channel n detection parameters		Channel 1 detection parameters	Channel 2 detection parameters		Channel n detection parameters
System physical characteristics													
On-site Ancillary Data													

From G. Pappalado et al., Atmos. Meas. Tech. 7, pp. 2389-2409, 2014

Register example

EARLINET Call-sign	MS	pictures				
Valid since / Status updated	2009 03 30	2011 02 22				
Station		eteorologisches	Institut LMU-MU	JENCHEN		
System name	MULIS					
Home Location		iisach (current)			unich (home)	
Home Location Coordinates	48.209 N	11.258 E	515 m asl	48.148 N	11.573 E	539 m asl
Home Location Environment	rural			urban		
System transportable	yes					
Emitter	Laser 1					
Laser type	Nd:YAG					
Laser manufacturer	Continuum					
Laser model	Surelite II					
Seeder	no					
Seeder bandwidth						
Seeder manufacturer						
Seeder model						
Pulse energy total (typ.)	1.6 J					
Repetition rate	10 Hz					
wavelength	1064 nm	532 nm	355 nm			
Pulse energy (typ.)	0.175 J	0.05 J	0.175 J			
Pulse length (typ.)	6 ns	6 ns	6 ns			
Polarization and purity (nominal)	elliptical	linear >95%	linear >95%			
Polarisation purity measured						
Polarisation orientation	elliptical	vertical	horizontal			
Laser beam diameter (mm)	8 mm fwhm					
Laser beam divergence	0.6 mrad fw a	at 86% of energ	ју			
Beam expansion type	n.a.					
Beam expansion factor						
Beam divergence						
Alignment	manual					
Alignment control	camera					
Alignment accuracy	0.1 mrad					
0						1 × 1

Handbook of Instruments

Register example

Receiver Optics	Telescope 1						Telescope 2 (near range)	
Telescope type									
Telescope manufacturer / model									
Telescope aperture diameter	0.063								
Telescope obscuration diameter	0								
Focal length	0.95 m	0.2 m							
Field of view	4 mrad								
Fieldstop type	tilted slit 60° variable 0 to +-3 mrad equiv.								
Fieldstop size	9.3 mm length	h, 1.9 mm width	circular diphrag 0.8 mm diamet						
Optical fiber Numerical Aperture									
Optical fiber manufacturer									
Optical fiber type									
Telescope-laser axes distance									
Collimation system type / model	planconvex len	ıs	Linos 312334				2* LINOS 3123	123	
Collimation focal length	101 mm						50 mm		
Detection channels									
Centre wavelength	355 nm	387 nm		532 nm		1064 nm	532 nm		
Scattering mechanism		vibr.Raman N2	Elastic parallel	Elastic cross	vibr.Raman N2	Elastic	Elastic		
Wavelength separation	DBS	DBS	DBS	DBS	DBS	DBS	n.a.		
Separation Passband bandwidth									
Separation transmission*									
Separation transmission pol. Paralle		0.982	0.962	0.962	0.878	0.912			
Separation transmission pol. Cross	0.997			0.956	0.891	0.787			
Out of band suppression						IFF	IFF		
Passband bandwidth		0.51 nm fwhm			0.46 nm fwhm		1 nm fwhm		
Passband transmission	0.45			0.49	0.7	0.55			
Out of band blocking	>0D 5	OD6 @355	> 0D 4	> 0D 4	OD6 @355	> 0D 4			
		OD7 @ 532			OD7.5 @ 532				
		OD6 @1064			OD6 @1064				
Polarization separation				PCB+SP					
Pol. Transmission parallel				0					
Pol. Transmission cross			0	1					
Neutral density filter OD	3 (variable)		1.28(variable)	• •		1.07	0		
Detector type	PMT	PMT	PMT	PMT		SI-APD	Si-PIN		
Detector manufacturer	Hamamatsu	Hamamatsu	Hamamatsu	Hamamatsu		LICEL	Silicon Sensor		
Detector model	R7400-U			R7400-U	R7400-U20	3 mm diameter	SS0-PD-50-7-TO8S		
Additional features	RSV			RSV		without lens	RSV		
Daytime capability	yes	no	yes	ves	no	yes	ves	EARLINET	

Handbook of Instruments

			(,		(
Data Acquisition						-				
Data acquisition mode	Analog	Analog/PC	Analog	Analog	Analog/PC	Analog	Analog			
Transimpedance Amplifier	yes	no	yes	yes	no	yes	yes			
Transimpedance Gain	10 kOhm		10 kOhm	10 kOhm		11 kOhm	100 kOhm			
Transimpedance Bandwidth						10 MHz	7 MHz			
Output impedance	50 Ohm	50 Ohm	50 Ohm	50 Ohm	50 Ohm	50 Ohm	50 Ohm			
Analog sampling rate	20 MS/s	20 MS/s	20 MS/s	20 MS/s	20 MS/s	20 MS/s	20 MS/s			
Bandwidth	10 MHz	10 MHz	10 MHz	10 MHz	10 MHz	10 MHz	10 MHz			
A-D bits	14 bit	12 bit	12 bit	14 bit	12 bit	12 bit	14 bit			
Input termination	50 Ohm	50 Ohm	50 Ohm	50 Ohm	50 Ohm	50 Ohm	50 Ohm			
Max input Voltage	2 V	1 V	2 V	1.1 V	1 V	1 V	1.1 V			
Photon counting count-rate		250 MHz			250 MHz					
Data acquisition manufacturer	Spectrum	LICEL	Spectrum	Spectrum	LICEL	LICEL	Spectrum			
Data acquisition model	MI4022	TR20	PCI412	MI4022	TR20	TR20	MI4022			
Raw data range resolution	7.5 m	7.5 m	7.5 m	7.5 m	7.5 m	7.5 m	7.5 m			
Raw data time resolution	10 s	10 s	10 s	10 s	10 s	10 s	10 s			
Raw data altitude range	16 km	16 km	16 km	16 km	16 km	16 km	16 km			
Pretrigger data	yes	yes	yes	yes	yes	yes	yes			
Mode of Operation										
Lidar pointing	Zenith									
Scanning range Elevation	-5° to 95°									
Scanning range Azimuth	350°									
Unattended operation	partly									
Automated functions	Scanning, de	epolarization ca	libration							
Auxilliary Information										
Sunphotometer										
Nearest radio sounding station		heim WMO 108	368							
Distance to lidar station	10 km									
Frequency of Radio Soundings	Noon, Midnight									
Abbreviations	interference filter (IFF) dichroic beam splitter (DBS) photon counting (PC) double grating monochromator (DGM) single grating monochromator (SGM) Fabry-Perot interferometer (FPI) polarizing cube beamsplitter (PCB) sheet polarizer (SP)									
Annotations	(*) Product of all beam splitters divided in parallel and perpendicular to the laser polarization, if available.									

EARLINET

- Multi-installation facility offering a wide range of services to test and calibrate lidars and ceilometers
- Extends exisiting hadware quality assurance procedures
- Implementation starting in 2015

LiCal logical structure

- For data coming from a network of instruments to be consistent, a quality assurance program is necessary
- This is especially demanding when the instruments are very different from each other in their specific implementations
- Over its history (15 years, with roots that extend earlier in time) EARLINET has developed quality assurance protocols, both on hardware and software, to ensure data homogeneity
- Along with measurement schedule protocols, this allows
 EARLINET acting as a single, virtual instrument

 Climatology measurements Mondays:

 $\frac{1}{2}$ hour between 1 hour before and 1 hour after 2 pm local solar time \rightarrow well developed PBL

¹/₂ hour between 1 hour before and 3 hours after sunset

 \rightarrow to allow operation of Raman channels

Thursdays

1/2 hour between 1 hour before and 3 hours after sunset

- Special events: Saharan dust outbreaks, forest fires, photochemical smog, volcanic eruptions...
- CALIPSO correlative measurements → when CALIPSO overflight is within a range from the lidar station vertical, to validate and provide support to CALIPSO measurements

EARLINET evolution

BL: backscatter lidar (only backscatter cannel)

RL: Raman lidar (at least on Raman cannel)

MWRL: Multiwavelength Raman lidar (at least 3 elastic channels and at least 2 Raman channels → EARLINET "standard)

Related reading

- V. Matthias et al., "Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments", Appl. Opt. **43** (4), pp. 961-976, 1 Feb. 2004
- C. Böckmann et al., "Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms", Appl. Opt. **43** (4), pp. 977-989, 1 Feb. 2004
- G. Pappalardo et al., "Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio", Appl. Opt. **43** (28), pp. 5370-5385, 1 Oct. 2004
- V. Freudenthaler, "The telecover test: A quality assurance tool for the optical part of a lidar system", Reviewed and Revised Papers presented at the 24th International Laser Radar conference, Boulder (CO) USA, 2008, pp. 145-146. (paper and poster available at http://epub.ub.uni-muenchen.de/12958/)
- V. Freudenthaler et al., "Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006", Tellus, 61B, pp. 165-179, 2009

Related reading

Atmospheric Measurement Techniques (AMT) Special Issue on "EARLINET, the European Aerosol Research Lidar Network" (in progress):

- G. Pappalado et al., "EARLINET: towards an advanced sustainable European aerosol lidar network", Atmos. Meas. Tech. **7**, pp. 2389-2409, 2014
- + upcoming papers related to hardware quality assurance and the Single Calculus Chain

Acknowledgments

- European Union 7th Framework Programme grant agreement No. 262254 (ACTRIS)
- Spanish Ministry for Economy and Competitiveness grant TEC2012-34575
- Spanish Ministry for Economy and Competitiveness and ERDF grant UNPC10-4E-442
- Catalan Agency for Support to Universities and Research (AGAUR) grant 2014 SGR 583

