Basics of Lidar, part 1 Elastic Lidar

WLMLA 2015, Cuba

Henrique M. J. Barbosa Instituto de Física – USP hbarbosa@if.usp.br http://www.fap.if.usp.br/~hbarbosa

Outline

Radiative transfer in the atmosphere

- Beer-Bouguer-Lambert law
- Mie Scattering
- Typical LIDAR setup
 - Detector
 - Overlap
- Lidar Equation
 - Molecular atmosphere
 - Klett-Fernald-Sasano
- The Lalinet (tentative) algorithm

Electromagnetic Radiation

- It is a form of energy emitted and absorbed by charged particles, that propagates in space as a wave and as a particle at the same time;
- It is formed by a magnetic field and an electric field vibrating in phase, perpendicular to each other and to the propagating direction;
- The speed of propagation in vacum is a constant given by
 E/B = c

Eletromagnetic Spectrum

Solar and terrestrial spectrum

Radiance

- Radiant energy per unit time, per wavelength, per solid angle and per unit perpendicular area
 - Function of position, direction, wavelength and time

$$dI_{\lambda}(\vec{r},\hat{n},t) = \frac{dE_{\lambda}}{\cos\theta \cdot d\lambda \cdot da \cdot d\Omega \cdot dt}$$

Units: W m⁻² sr⁻¹ m⁻¹

Irradiance

- Radiant energy per unit time, per wavelength, per unit of perpendicular area
 - Integral of radiance over a certain solid angle

Hemispheric Flux

 Integrating over the top half (upward flux) or lower half inferior (downward flux):

• Upward:

$$F_{\lambda}^{\uparrow} = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}(\theta, \varphi) \cos(\theta) \sin(\theta) d\theta d\varphi$$

• Downward:

$$F_{\lambda}^{\downarrow} = -\int_{0}^{2\pi} \int_{\pi/2}^{\pi} I_{\lambda}(\theta, \varphi) \cos(\theta) \sin(\theta) d\theta d\varphi$$

Non-monocromatic Fluxes

Downward shortwave radiation at the surface

$$SW_{sfc}^{\downarrow} = \int_{100\,nm}^{4\,\mu m} F_{\lambda}^{\downarrow}(sfc) \, d\lambda$$

• Outgoing longwave radiation:

$$LW_{top}^{\uparrow} = \int_{4\mu m}^{100\,\mu m} F_{\lambda}^{\uparrow}(top) d\lambda$$

Downward PAR radiation:

$$PAR = \int_{400\,nm}^{700\,nm} F_{\lambda}^{\downarrow}(sfc) \, d\lambda$$

Radiation in the Atmosphere

- Extinction and emission are the two main processes in the atmosphere
- Extinction:
 - It is a process that reduces the radiance. Can be due to absorption or to scattering
 - Absorption: transforms EM energy in something else
 - Scattering: changes direction of propagation
- Emission:
 - It is a process that increases the radiance.
 - All bodies with **T>0 K** emits radiation
 - There can be scattered radiation in the beam direction

Light extinction

• The extinction process is proportional to the radiance and to the amount of matter

• If *ds* is small enough, there is no overlap between scatters (single layer limit)

Light extinction

• Therefore, the fraction of extinguished photons is

$$\frac{dI_{\lambda}}{I_{\lambda}} = -\frac{\sigma \cdot NAds}{A} \qquad \begin{cases} \sigma = \text{cross section} \\ N = \# / \text{volume} \\ N A ds = \# \end{cases}$$

Light extinction

• Therefore, in terms of <u>extinction cross section</u> $[m^2]$, σ :

$$dI_{\lambda} = -\sigma NI_{\lambda} ds$$

• Or in terms of <u>volume-extinction coefficient</u> [1/m], α :

$$dI_{\lambda} = -\alpha I_{\lambda} ds$$

• Or in terms of <u>mass extinction coefficient</u> [m²/kg]:

 $dI_{\lambda} = -(\alpha / \rho)I_{\lambda}d\chi$ $d\chi = \rho \cdot ds$ Mass thickness

• Or in terms of <u>molar extinction</u> [m²/mol], ε:

$$dI_{\lambda} = -\varepsilon cI_{\lambda}ds$$
 c = Molar concentration

Extinction along a path

• Solving this differential equation, we find:

$$I_{\lambda}(s) = I_{\lambda}(s_0) \exp\left[-\int_{s_0}^{s} \alpha(\lambda, s') ds'\right]$$

• ... and if there is different types of particles:

$$I_{\lambda}(s) = I_{\lambda}(s_0) \exp\left[-\sum_{i} \int_{s_0}^{s} \alpha_i(\lambda, s') ds'\right]$$
$$\tau(s_0, s)$$

Beer-Bouguer-Lambert Law

• Wikipedia - This law was discovered by Pierre Bouquer before 1729 and it is often (mis)attributed to Johann Heinrich Lambert, who cited Bouguer's "Essai d'Optique sur la Gradation de la Lumiere" (Claude *Jombert, Paris, 1729), and even quoted from it, in his* "Photometria" in 1760. Much later, August Beer extended the exponential absorption law in 1852 to include the concentration of solutions in the absorption coefficient.

$dI_{\lambda} / I_{\lambda} \propto ds$	$dI_{\lambda} / I_{\lambda} \propto c$
Bougher	Beer

Emission of radiation

 Planck's function explains the radiance emitted by a black body (ideal):

$$B_{\lambda} = \frac{2\pi hc^2}{\lambda^5 \left(e^{hc/kT\lambda} - 1\right)}$$

Units: W m⁻² sr⁻¹ m⁻¹

In the non ideal case, there is an emissivity:

$$B_{\lambda}^{\text{gray}} = B_{\lambda}^{\text{black}} \cdot \varepsilon$$

Stefan-Boltzmann law

 Integrating over all possible wavelengths, we find the total power emitted by the black body, which is the Stefan-Boltzmann radiation law:

$$P_{emitted} = \int_{0}^{\infty} B_{\lambda} d\lambda = \sigma T^{4}$$

 where σ=5.671 x 10⁻⁸ W m⁻² K⁻⁴ is the Stefan-Boltzmann constant

Kirchoff's Law

• If a body is in thermodynamical equilibrium, then:

Emissivity = Absorptivity

 Hence the radiance due to the emission of thermal radiation <u>has the same constant α</u>:

Schwarzchild's equation

• The radiative transfer equation is simply the beerlambert law considering emission:

$$dI_{\lambda} = -\alpha I_{\lambda} ds + \alpha B_{\lambda} ds \implies \frac{dI_{\lambda}}{\alpha ds} = -I_{\lambda} + B_{\lambda}$$

And our old solution ... becomes more complicated

$$I_{\lambda}(s) = I_{\lambda}(s_0)e^{-\tau(s_0,s)} + \int_{0}^{\tau(s_0,s)} B_{\lambda}e^{-\tau'} d\tau'$$

 Schwarzschild's equation describes radiative transfer in a nonscattering medium (applies to remote sensing in the thermal IR band)

Scattering x Absorption

• We should remember that light can be extinguished by two processes, hence:

 $\alpha_{total} = \alpha_{abs} + \alpha_{scat}$

• ... and that Kirchoff's law say $\alpha_{abs} = \alpha_{emis}$, hence the radiative transfer equation should be:

$$dI_{\lambda} = -\alpha_{scat}I_{\lambda}ds - \alpha_{abs}I_{\lambda}ds + \alpha_{abs}B_{\lambda}ds$$

• ... and that is why the previous solution is only valid for α_{scat} =0

Points to remember #1

- We will see that we do not have to solve the radiative transfer equation in the case our a LIDAR system...
- What is important from this review is:

$$I(\lambda) = I_0(\lambda) e^{-\tau_{total}}$$

$$\tau_{total}(\lambda) = \sum_{k=species} \int_{s_0}^{s} \alpha_{total}^k(\lambda, s') ds'$$

$$\alpha = N\sigma \Longrightarrow \sigma_{total} = \sigma_{abs} + \sigma_{scat}$$

Extinction efficiency

• The cross-section has units of area (that "*shadows*" the light), but this "*area*" can be much larger or smaller then the real area, A_e, of the extinguisher.

$$\sigma_{ext} = \sigma_{abs} + \sigma_{scat} \qquad [L^2]$$

We can define dimensionless *scattering* and *absorbing efficiencies* by making:

$$Q_{abs} = \frac{\sigma_{abs}}{A_e}$$
 $Q_{scat} = \frac{\sigma_{scat}}{A_e}$

Single scattering albedo

 The ratio of Q_{scat} and Q_{ext} is called the singlescattering albedo, ω, and represents the fraction of light extinction due to the scattering processes:

$$\omega = \frac{Q_{scat}}{Q_{ext}} = \frac{\sigma_{scat}}{\sigma_{ext}} = \frac{\sigma_{scat}}{\sigma_{scat} + \sigma_{abs}}$$

• Hence, **1**-*w*, is the fraction that is absorbed.

Angstrom exponent

To obtain the extinction coefficient at the transmitted wavelength we have to introduce the Ångström exponent a(R), which describes the wavelength dependence of the particle extinction coefficient,

$$\frac{\alpha_{\text{aer}}(\lambda_0)}{\alpha_{\text{aer}}(\lambda_{\text{Ra}})} = \left(\frac{\lambda_{\text{Ra}}}{\lambda_0}\right)^{\check{a}(R)}, \qquad (4.18)$$

		N	reff	ssa	g	â	â
	Aerosol type	(cm ⁻³)	(µm)	(0.55 µm)	(0.55 µm)	(0.35-0.55 µm)	(0.55–0.8 µm)
	Cont. clean	2600	0.247	0.972	0.709	1.10	1.42
	Cont. average	15,300	0.204	0.925	0.703	1.11	1.42
	Cont. polluted	50,000	0.150	0.892	0.698	1.13	1.45
	Urban	158,000	0.139	0.817	0.689	1.14	0.43
	Desert	2300	1.488	0.888	0.729	0.20	0.17
	Marit. clean	1520	0.445	0.997	0.772	0.12	0.08
	Marit. polluted	9000	0.252	0.975	0.756	0.41	0.35
	Marit. tropical	600	0.479	0.998	0.774	0.07	0.04
	Arctic	6600	0.120	0.887	0.721	0.85	0.89
	Antarctic	43	0.260	1.000	0.784	0.34	0.73
	Stratosphere						
tkamp, chap 4	(12-35 km)	3	0.243	1.000	0.784	0.74	1.14

Table 4.1. Properties of aerosol types [1]^a

Light scattering mechanisms

Light scattering can be divided into three categories:

- Elastic scattering when the wavelength of the scattered light does not change
- Quasi-elastic scattering when the wavelength shifts slightly owing to Doppler effects and diffusion broadening
- **Inelastic scattering** when the wavelength of the scattered radiation is different from the incident

Light scattering mechanisms

FIGURE 15.1 Mechanisms of interaction between incident radiation and a particle.

Light scattering

- Absorption and elastic scattering of light by a spherical object is a classical problem in physics.
- The key parameters that govern scattering and absorption of light by an sphere are
 - 1. The wavelength λ
 - 2. The diameter of the sphere D
 - 3. Index of refraction of the sphere
- $\succ x = \pi D / \lambda$

 $\tilde{n} = n + i\kappa$

• The mathematical formalism used to solve this problem is called **Mie Theory**.

Mie Theory

Mie theory is the basis of a computational procedure to calculate the scattering and absorption of light by any sphere as a function of wavelength.

- Limiting cases:
 - $\pi D/\lambda \ll 1$ Rayleigh scattering
 - $Q_{scat} \sim \lambda^{-4}$ and $Q_{abs} \sim \lambda^{-1}$
 - $\pi D/\lambda \sim 1$ Mie scattering
 - Q_{scat} and Q_{abs} vary a lot with **x** and **ñ**
 - $\pi D/\lambda >> 1$ Geometric optics
 - Reflection, refraction and difraction

Mie Theory

Extinction efficiency of a water droplet approaches the limiting value 2, i.e. twice as much as predicted by geometric optics

Seinfeld & Pandis, cap. 15

Phase function

Example $(NH_4)_2SO_4$ RH=80% λ =550nm

Phase function

The angular distribution of light intensity scattered by a particle at a given wavelength is called the *phase function*.

Phase function

It is the scattered intensity at a particular angle θ normalized by the total scattered intensity considering all angles.

$$\int_{0}^{2\pi} \int_{0}^{\pi} P(\theta, x, \tilde{n}) \sin \theta \, d\theta \, d\varphi = 4\pi$$

The **angular volumescattering coefficient** $[m^{-1} sr^{-1}], \beta, is$

$$\beta(\theta, x, \tilde{n}, \lambda) = \alpha_{scat}(\lambda) \frac{P(\theta, x, \tilde{n})}{4\pi}$$

Asymmetry parameter

• The asymmetry parameter **g** is defined as the intensity-weighted average of the cosine of the scattering angle:

$$g = \frac{1}{2} \frac{\int_0^\pi \cos \theta \ F(\theta) \sin \theta \ d\theta}{\int_0^\pi F(\theta) \sin \theta \ d\theta}$$
$$= \frac{1}{2} \int_0^\pi \cos \theta \ P(\theta) \sin \theta \ d\theta$$

The factor of ½ ensures that g = 1 for light scattered totally at θ=0° (forward) and g = -1 for light scattered completely at θ=180° (backward).

 Aerosol and molecule interaction with the radiation depends on:

• Size

$$x = \pi D/\lambda$$

Shape
Surface properties
$$\tilde{n} = n + i\kappa$$

Points to remember #3

- The atmosphere has
 - Molecules (~ 0.1 to 0.5 nm)
 - Aerosol particles (10nm to 1μm)
- Solar radiation ~ 0.1 to $4\mu m$, hence 2 types of scattering
 - πD/λ << 1 Rayleigh scattering Molecules
 - $\pi D/\lambda \sim 1$ Mie scattering Aerosols
- Total extinction is given by

 $\alpha_{ext} = \alpha_{abs} + \alpha_{scat}$

$$\begin{cases} \alpha_{abs} = \alpha_{abs,g} + \alpha_{abs,p} \\ \alpha_{scat} = \alpha_{scat,g} + \alpha_{scat,p} \end{cases}$$

Outline

Radiative transfer in the atmosphere

- Beer-Bouguer-Lambert law
- Mie Scattering

Typical LIDAR setup

- Detector
- Overlap
- Lidar Equation
 - Molecular atmosphere
 - Klett-Fernald-Sasano
- The Lalinet (tentative) algorithm

Speed of light is **3 x 10⁸ m/s** and we measure at **20Mhz**, hence **vertical resolution is 7.5m**

Typical setup

Fig. 1.1. Principle setup of a lidar system.

Weitkamp, chap 1

An example:

Beam expander

Primary mirror

1

Chip?

Optical layout – Detection

PMT

HV control

Optical layout - Detection

SPECTRAL RESPONSE

Landulfo, 2012

Signals overlap and give large measurable voltage

Pulses too far way

BOROSILICATE GLASS

300

WAVELENGTH (nm)

400

500 600 700 800 1000 1200

SYNTHETIC SILICA

V GLASS

200

0.1

0.01

100

Efficiency is not uniform over Anode Simeonov et al, Ap. Opt. 1999

Efficiency < 30%

Parallel to the dynodes

Fig. 3. Anode spatial uniformity from Fig. 1 with resolution enhanced ten times by two-dimensional interpolation ($20 \times 20 \ \mu m$). A model image of the probing laser beam with a range resolution of 15 m (sequence of black circles) and the receiving telescope field stop (violet circle).

Optical layout - Emission

Beam div x FOV tel

Mono- vs Bi-axial systems

Fig. 1.3. Influence of the overlap function on the signal dynamics.

Weitkamp, chap 1

Outline

- Radiative transfer in the atmosphere
 - Beer-Bouguer-Lambert law
 - Mie Scattering
- Typical LIDAR setup
 - Detector
 - Overlap
- Lidar Equation
 - Molecular atmosphere
 - Klett-Fernald-Sasano
- The Lalinet (tentative) algorithm

How can we describe this signal?

How does the signal vary with time (or height) ?

The simplest lidar equation $P(r) = K \cdot G(r) \cdot B(r) \cdot T(r)$

- K = System performance
- G(r) = Change of geometry with range r
- B(r) = Fraction of light scattered towards the telescope
- T(r) = Atmospheric transmission

System performance

• Number of photons emitted $= P_0$

- Detection efficiency = $\eta(\lambda)$
- Effective pulse length $=\frac{c\tau}{2}$

Photons need to go out, scatter, and come back...

$$z = c\frac{t - t_0}{2} = range$$

Back-scatter coefficient

• For any angle θ, we had:

$$\beta(\theta, x(r), \tilde{n}(r), \lambda) = \alpha_{scat}(\lambda) \frac{P(\theta, x(r), \tilde{n}(r))}{4\pi}$$

 Telescope is small, r>>1 and θ~π (backscatter), and for isotropic scattering (P=1), the <u>total scattering</u> is then:

$$4\pi\beta(\pi,r,\lambda) = N(r)\sigma_{scat}(\lambda)$$

Transmission Term

• As the laser pulse travels two times the distance from the Lidar to range **r**, then the transmission term is simply:

$$T(r,\lambda) = \exp\left[-2\int_{0}^{r} \alpha_{ext}(r',\lambda) dr'\right]$$

Points to remember #4

Still 1 equation and 2

solve unless imposing

other constrains.

unknowns! Impossible to

Full lidar equation

Putting all these terms together we find

$$P(r,\lambda) = P_0 \frac{c\tau}{2} A\eta(\lambda) \frac{O(r)}{r^2} \beta(r,\lambda) \exp\left[-2\int_0^r \alpha_{ext}(r',\lambda) dr'\right]$$

And we need to remember that

$$\beta = \beta_{mol} + \beta_{par}$$
$$\alpha_{ext} = \alpha_{mol,ext} + \alpha_{par,ext}$$

Rayleigh scattering

$$\alpha_{mol,ext} = \alpha_{mol,scat} + \alpha_{mol,abs} \approx \alpha_{mol,scat}$$

Molecular cross-section

Total cross-section for Rayleigh scattering from molecules in the atmosphere is given by Bucholtz (1995):

$$\sigma_{mol}(\lambda) = \frac{24\pi^3}{\lambda^4 N_{std}^2} \frac{(n_{std}^2 - 1)^2}{(n_{std}^2 + 2)^2} \frac{6 + 3\rho_n}{6 - 7\rho_n}$$

- $n_{std}(\lambda)$ is the index of refraction of dry air
- $\rho_n(\lambda)$ is the depolarization factor
- N_{std} is the standard molecular density

Standard Atmosphere, N_{std} Again according to Bucholtz (1995)

- The standard atmosphere is defined as dry air with 0.03% de CO₂ by volume (300 ppmv) with pressure 1013.25 hPa and temperature 15°C.
- In the standard atmosphere

•
$$N_{std} = 2.54743 \times 10^{19} cm^{-3}$$

Index of refraction, n_{std}

- The n_{std} can be calculated using the equations given by Peck and Reeder (1972), λ is given in μ m
- For λ < 230nm

$$(n_{std} - 1) \times 10^8 = \frac{5791817}{238.0185 - \lambda^{-2}} + \frac{167909}{57.362 - \lambda^{-2}}$$

For λ > 230nm

 $(n_{std} - 1) \times 10^8 = 8060.51 + \frac{2480990}{132.274 - \lambda^{-2}} + \frac{17455.7}{39.32957 - \lambda^{-2}}$

355nm $n-1 = 2.86 \times 10^{-4}$ 532nm $n-1 = 2.78 \times 10^{-4}$ 1064nm $n-1 = 2.74 \times 10^{-4}$

Anisotropy factor, F_k

• Rayleigh scattering by molecules is not completely isotropic.

The King correction factor, *F_k*, accounts for this anisotropy

$$F_k = \frac{6+3\rho_n}{6-7\rho_n}$$

...NOT ALL MOLECULES ARE EQUAL TO SCATTERING

Landulfo 2012

Depolarization factor

 The depolarization factor depends on the molecule and on the wavelength. Bates (1984) gives the following equations for λ in μm

$$F(N_2) = 1.034 + 3.17 \times 10^{-4} \frac{1}{\lambda^2}$$

$$F(O_2) = 1.096 + 1.385 \times 10^{-3} \frac{1}{\lambda^2} + 1.448 \times 10^{-4} \frac{1}{\lambda^4}$$

$$F(Ar) = 1.00$$

$$F(CO_2) = 1.15$$

Depolarization factor of air

• According to Bodhaine et al (1999), these can be combined to obtain the depolarization factor of dry air considering the mass fractions of each gaseous species

$$F(air) = \frac{\sum_{k} C_{k} F_{k}}{\sum_{k} C_{k}}$$
355nm $F_{k}^{air} = 1.053$ $\rho_{n}^{air} = 0.0306$
532nm $F_{k}^{air} = 1.049$ $\rho_{n}^{air} = 0.0284$
1064nm $F_{k}^{air} = 1.047$ $\rho_{n}^{air} = 0.0274$

 $F(air, CO_2) = \frac{78.084F(N_2) + 20.946F(O_2) + 0.934 \times 1.00 + C_{CO_2} \times 1.15}{78.084 + 20.946 + 0.934 + C_{CO_2}}$

Molecular Scattering coefficient

• With the molecular scattering cross-section, we can calculate the molecular scattering coefficient

$$\alpha_{scat,mol}^{std}(\lambda) = N^{std}\sigma_{scat,mol}(\lambda)$$

355nm α_{std} = 70.3 Mm⁻¹532nm α_{std} = 13.2 Mm⁻¹1064nm α_{std} = 0.80 Mm⁻¹

• For different P and T conditions, what changes is N

$$\alpha_{mol}(\lambda, z) = \alpha_{mol}^{std}(\lambda) \frac{N(z)}{N^{std}} = \alpha_{mol}^{std}(\lambda) \frac{P(z)}{P^{std}} \frac{T^{std}}{T(z)}$$

Mol. Angular-scattering coefficient

• From the previous discussion we know that:

$$eta_{mol}(heta,\lambda,z) = rac{lpha_{mol}(\lambda,z)}{4\pi} P_{mol}(heta,\lambda)$$

• Where the molecular phase function is for Rayleigh scattering is

$$P_{\rm ray}(\theta) = \frac{3}{4}(1 + \cos^2 \theta),$$

• This, however, does not include molecular anisotropy.

Molecular phase function

• With anisotropy, according to Bucholtz (1995):

$$P_{mol}(heta) = rac{3}{4(1+2\gamma)} \left[(1+3\gamma) + (1-\gamma)cos^2 \theta
ight]$$

• The parameter γ comes from the the depolarization factor, ρ_n , we have shown before :

$$\gamma = \frac{\rho_n}{2 - \rho_n}$$

$$355nm \quad \gamma^{air} = 0.0155$$

$$532nm \quad \gamma^{air} = 0.0144$$

$$1064nm \quad \gamma^{air} = 0.0139$$

Molecular backscatter

• Putting pieces together and taking $\theta = \pi$, we find that

$$eta_{mol}(\pi,\lambda,z) = rac{lpha_{mol}(\lambda,z)}{8\pi/3} rac{1+\gamma}{1+2\gamma}$$

• Which means that the molecular lidar ratio is

$$LR_{mol} = \frac{\alpha_{mol}}{\beta_{mol}} = \frac{8\pi}{3} \frac{1+2\gamma}{1+\gamma} = \frac{8\pi}{3} \frac{2+\rho_n}{2}$$

$$\frac{355nm}{532nm} \frac{LR_{mol}}{LR_{mol}} = 1.0153 \times \frac{8\pi}{3}$$

$$\frac{8\pi}{3}$$

$$LR_{mol} = 1.0142 \times \frac{8\pi}{3}$$

Molecular signal

• The optical depth due to molecular extinction long the range **r** is

$$\tau_{mol}(\lambda,r) = \int_{0}^{r} \alpha(\lambda,r') dr' = \alpha_{mol,std} \frac{T_{std}}{P_{std}} \int_{0}^{r} \frac{P(r')}{T(r')} dr'$$

Hence the molecular lidar signal is written as

$$P_{mol}(r) \propto \frac{1}{r^2} \beta_{mol}(r) \exp \left[-2\alpha_{mol}^{std} \frac{T^{std}}{P^{std}} \int_{0}^{r} \frac{P(r')}{T(r')} dr' \right]$$

What is the proportionality constant?

Molecular fit

Solutions to the Lidar equation

• Rewrite the equation as:

$$r^{2}P(r,\lambda) = C\beta(r,\lambda) \exp\left[-2\int_{0}^{r} \alpha_{ext}(r',\lambda) dr'\right]$$

• And consider a new variable:

$$S(r) = \log(r^2 P(r,\lambda))$$

• Then

$$S(r) = \log(C) + \log(\beta(r)) - 2\int_{0}^{r} \alpha(r', \lambda) dr'$$

If homogeneous atmosphere

• Taking the derivative to **r**

$$\frac{dS}{dr} = \frac{1}{\beta} \frac{d\beta}{dr} - 2\alpha$$

• If the atmosphere is homogenous, $\beta = cte$, then

$$\alpha = -\frac{1}{2}\frac{dS}{dr}$$

• We just need a linear-fit where S(r) is a straight line. This is the **slope method**.

Analytical methods

• Klett, Ap. Opt. 1985

Sasano et al, Ap. Opt. 1985

Hitschfeld & Bordan, J. Meteo. 1954 radar

- Fernald, Ap. Opt. 1972 Forward eta=Blpha
- Klett, Ap. Opt. 1981 • Turbid, $\alpha_n >> \alpha_m \sim 0$ Backward $\beta = B\alpha^K$
- Fernald, Ap. Opt. 1984 $\beta_m = B_m \alpha_m \quad \beta_p = B_p \alpha_p$ • Turbid, $\alpha_p \sim \alpha_m > 0$

 $\beta = B(r)\alpha^{\kappa}$

 $\beta_m = B_m \alpha_m \quad \beta_p = B_p(r) \alpha_p$

Other methods

Slope method

- Collis, QJRMS 1966
- Viezee et al, JAM 1969

Inverse modeling

- Kastner, 1987
- Yee, 1989

Total Integrated backscatter

Klett-Fernald-Sazano

• Following Ansmann & Muller (Weitkamp, chap 4):

$$\beta_{aer}(R) + \beta_{mol}(R) = \frac{S(R) \exp\left\{-2\int_{R_0}^{R} \left[L_{aer}(r) - L_{mol}\right] \beta_{mol}(r) dr\right\}}{\frac{S(R_0)}{\beta_{aer}(R_0) + \beta_{mol}(R_0)} - 2\int_{R_0}^{R} L_{aer}(r)S(r)T(r, R_0) dr}$$

• Where:

$$T(r, R_0) = \exp\left\{-2\int_{R_0}^r \left[L_{aer}(r') - L_{mol}\right]\beta_{mol}(r') dr'\right\}$$

$$L_{aer}(R) = \frac{\alpha_{aer}(R)}{\beta_{aer}(R)}$$

$$L_{mol} = \frac{\alpha_{mol}(R)}{\beta_{mol}(R)}$$

Klett-Fernald-Sazano

- Ansmann & Muller (Weitkamp, chap 4):
 - "... can, in principle, be integrated by starting from the reference range R₀, which may be either the near end (R > R₀, forward integration) or the remote end (R < R₀, backward integration) of the measuring range. Numerical stability, which is not to be mistaken for accuracy, is, however, given only in the backward integration case".

Lidar Ratio / sr

BSC / Mm-1 sr-1

Typical LR_{aer}

Ansmann (WLMLA Course, 2013 Pucon)

 "Forward and Backward Klett should converge when using the correct particle lidar ratio"

WLMLA-Course 2011, Bolivia

- Ice crystals 10 sr
- Marine 20-30 sr
- Continental 60-70 sr
- Heavy polluted 100 sr

WLMLA-Course 2013, Chile

- 20-35 sr Marine
- Saharan 40-70 sr
- 70-100 sr Biomass
- Urban

- 45-75 sr

Backscatter from Klett-Fernald-Sasano

Another source of error, Overlap

Outline

- Radiative transfer in the atmosphere
 - Beer-Bouguer-Lambert law
 - Mie Scattering
- Typical LIDAR setup
 - Detector
 - Overlap
- Lidar Equation
 - Molecular atmosphere
 - Klett-Fernald-Sasano
- The Lalinet (tentative) algorithm

Round #1, Pucon 2013

Round #3 for Barbosa et al, OPA 2014

- After 3 to 5 stages of intercomparison, searching for bugs, fixing, etc... we got to a point where we could trust our analysis.
- But still, systematic differences!

Workshop, Concepcion 2014

Figure 1 – Particle backscatter (Mm-1 sr-1) after step 1.

Figure 2 – Particle backscatter (Mm-1 sr-1) after step 2.

Table 1 – Differences before the first step (black), after the comparison of molecular quantities and first changes to the inversion algorithms (red) and after the comparison with known answer (green) are shown.

	$\beta_{par}(z_0)$ Mm ⁻¹	$\beta_{mol}(z_0)$ Mm ⁻¹	Scale x10 ¹⁴	BG	Bin z ₀	σstd 10 ⁻³⁰ m ⁻²	LR sr ⁻¹
AM	0	1.6157	4.8967	1.2294 10 ⁻³	899	2.7694	8.5058
		1.6054			900		
			4.89763	7.6318 10 ⁻⁴			
SP	0	1.60404	1.748	-	900	2.7606	8.50411
			1.75087	8.16868 10 ⁻⁷			
			4.8952	6.045 10 ⁻⁴			
CH	0	1.5598	2.08	0	900	2.6381	8.3776
		1.6065	2.034			2.7694	8.5058
			4.8859	8.33 10 ⁻⁴			
CO	0	1.51	1.8489	-	900		8.50411
		1.60404	1.75087	8.16868 10 ⁻⁷		2.7606	
			4.8929	5.5 10 ⁻⁴			
AR	10-3	1.5597	4.83	4.81 10 ⁻¹²	900	2.639	8.3776
		1.609	4.89	1.16 10 ⁻³		2.7694	8.5058
				7.34 10 ⁻⁴			

Manu bugs...

AM was missing a 2 in the attenuation term exp[-2\tau] of the molecular signal

SP and CO were using $\beta mol(z)$ instead of Pmol(z) for the fitting.

CH was removing the background from the signal but not from the range corrected signal.

AR was modifying the lidar signal instead of the synthetic molecular signal, which leads to fitting errors when the lidar signal is very noise.

Figure 3 – Molecular backscatter (Mm-1 sr-1) at begin of step 3.

Lalinet code

Available code in Matlab and Mathematica

- Molecular atmosphere
- Rayleigh fit with BG
- Klett

Next steps:

- Auto-find molecular region
- Auto-find clouds
- Overlap
- Raman
- etc...

www.fap.if.usp.br/~hbarbosa