anumber of latitudes in Apr. 1985, Details of the flights are
contained in Table I. Figure 2 shows the derived column
amounts and also amounts derived for the same days from
three lines in the 1605-cm™! region of NO, v3 [Fig. 1(b)], the
region we previously used for the NO; retrievals.?

Good agreement is found between the amounts derived
from both NO; bands. The error bars in Fig. 2 represent one
standard deviation of the measurements in the 2915-cm=!
region, The variability of the 2915-cm=! measurements at
T0°N is substantially larger than at other latitudes for un-
known reasons. The standard deviation of the 1605-cm=1
measurements is much smaller. There is generally overlap
between the measurements in the two bands, especially when
we consider that the accuracy of the line parameters is only
~10%. No systematic differences may be detected between
measurements in the two bands.

Previous comparisons of stratospheric NO, amounts de-
termined from simultaneous measurements (but with differ-
ent instruments) in the IR v3 and visible regions, such as
during the NASA Balloon Intercomparison Campaigns,?
have shown significant discrepancies. However, v5 and visi-
ble NO, (nonsimultaneous) quantification from University
of Denver balloon-horne measurements gave similar altitude
profiles.!? The good agreement in the present work in the
retrieved amounts from the two IR bands, using the same
observing instrument, supports the accuracy of the line pa-
rameters for those bands. Further intercomparison is need-
ed to resolve differences between retrievels in the IR and
visible regions.

These measurements were made with the support of the
NCAR Research Aviation Facility; their assistance is ac-
knowledged. The National Center for Atmospheric Re-
search is sponsored by the National Science Foundation.
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The familiar solution to the single-scattering lidar equa-
tion predicts extinction as a function of range in terms of (1)
the relative signal strength and (2) a reference or boundary
value of extinction that is present as an independent con-
stant of integration. For cases of low visibility the solution is
only weakly dependent on this latter parameter, but it can
become of critical importance for some circumstances of
moderate to high visibility.

Algorithms to estimate the extinction boundary value by
making use of knowledge of the absolute power level of the
return signal are available in the literature.l-3 This Letter
presents an alternative set which has been selected on the
grounds of simplicity and performance in numerical experi-
ments. The result is a combination of three models, one
valid for cases of low optical depth, another suitable for most
cases of moderate to large optical depth, and a third provided
largely as a default procedure for somewhat anomalous situa-
tions that cannot be handled by either of the two principal
algorithms.

On making the usual assumption that the atmospheric
backscatter and extinction coefficients, B and g, are related
according to a power law of the form

8 = Bd*, (1)

where B depends on wavelength and various properties of the
obscuring aerosol and k =~ 1, the single-scattering lidar equa-
tion may be expressed in the form

() = I[r2P()] = C + k Ino — 2 j " odr, @
0

In this equation P(r) is the instantaneous power received
from range r, and the system constant C is given by

C = In(0.5P,BerA), 3)
where P, is the transmitted power, ¢ is the velocity of light, =
is the pulse duration, and A is the effective system receiver

area.
For constant k the stable solution to Eq. (2) is

exp((S — S,,)/k]
{0;1 + % [ ™ expl(S — Sm);‘k]dr’}

a(r) =

5 (4)

where S, = S(ry), om = 0(rn), and r < r,.4 Note that the
solution depends on both the relative signal, S — S,,, and the
extinction boundary value o,,; the latter makes its appear-
ance as an independent constant of integration, as described
above.

From Eq. (2) one can attempt to relate ap, to the signal
strength returned from the maximum useful range r,:



sm=c+k1mm—2[’“drf. (5)
0

However, the contribution of the integral attenuation term
over the interval (0,rp), where r¢ is the point of transmitter
and receiver beam overlap, is unfortunately unknown. Two
previously made assumptions about this unknown attenua-
tion term are that (1) the extinction is constant over the
interval (0,rg)?2 and (2) the average extinction over (0,ry) is
the same as that over (ro,/)t

On the other hand, the contribution to the attenuation
term over the interval (ro,r,) is easily expressed as a function
of o, by integration of Eq. (4):

Thy 2 m [Tm
] odr’ = % In {1 + ﬁ:—j expl(S - Sm)/‘k]dr’} :

o (]

o | =

In(1 + I2,,). (7

In this last expression the extinction boundary value and the
signal integral have been expressed in dimensionless form:

I=(r, — 1)) J’“ exp[(S — S,.)/k]dr, (®)

To
Q,, = 20,,(r, = ro)/k. (9)

Note that Eq. (9) provides a measure of optical depth over
the interval (ro,rm).

If we now impose the second of the assumptions described
above concerning the attenuation to the crossover point,
namely, that

J ™ odt’ = [t = 1) J " odr, (10)
(] o

one arrives at the following equation for Q,,!:

Iy v

" " (rm_r(!]

In(1 + I9,,), (11)

where the constant G,, is given by

G, = (S,,— C)/k + In[2(r,, — ro)/k]. (12)
Thus the desired 9, is located at the intersections of the
curve y; = G, with the curve (see Fig. 1)

¥o = InQ — In(1 + IQ).

(rm —ro)

‘However, it can be seen from the figure that there are no
roots if G,, is greater than the maximum of Eq. (11) occurring
at

Q, = (r, — ro)/ryl. (13)

Computational experience with the algorithm also shows it
to be unreliable for some cases of low visibility. This might
be expected from Fig. 1, since the intersection of the two
curves for large Q,, occurs where they are nearly parallel;
hence a small error in the estimated value of the system
constant, for example, might produce a very large error in the
root.

Because of these difficulties (the possibility of there being
nosolution if the computed value of G, is sufficiently in error
and the possible error amplification in cases of large optical
depth), it has been found useful to employ instead three
separate estimation procedures, with each taylored for a
range of parameters or set of conditions. For low visibilities,
we note from Eq. (7) that the average value of extinction
depends primarily on the relatively large magnitude of the

signal integral I, so that an additional constraint is needed to
select a unique boundary value of extinction. This suggests
the simple approach of determining the boundary value in
such cases by setting it equal to the average extinction.
Then directly from Eq. (7) one obtains Q,, as the solution to

2, =In(1 +12,). (14)

It is easy to show that this equation always has a solution for I
> 1 and that it may be obtained in a few iterations starting
with an initial small value for Q,,. Any error in the estimate
supplied by Eq. (14) will make little difference in the calcu-
lated visibility for the circumstances for which this particu-
lar algorithm is intended.

For high visibilities the choice of ¢, influences ¢(r) more
strongly, there being insufficient optical depth for the well-
known self-convergence property of Eq. (4) to play a signifi-
cant role. Also, as can be seen from the large intersection
angle of the curves in Fig. 1 for the case of the small root,
errors in G, will not be reflected as greatly amplified errors
in the root. Hence an alternative to Eq. (14) is appropriate
for high visibilities. Although Eq. (11) is suitable for this
purpose, a slightly simpler algorithm may be obtained from
Eq. (5) by using the previously mentioned alternative as-
sumption of constant extinction from the lidar to the cross-
over point. Then Eq. (5) may be expressed in the form

G, = G, + 2ryo,/k = InQ,, — In(1 + I2,). (15)

This equation may now be solved for the desired extinction
boundary value (in dimensionless form):

Q,, = [exp(-G,) —I]™. (16)

This algorithm is very similar to Mulders’s® modification of
the formulation of Ferguson and Stephens.2

In general ¢y is not known unless oy, is, but in practice this
minor difficulty can be overcome through simple iteration of
Eq. (16). For example, one may initially set o = 0 and solve
for o,,; then from Eq. (4) evaluated at ro a new value of oy is
obtained, which may be substituted back into Eq. (16) and so
forth. This procedure is successful in the presence of errors
because of the stability of Eq. (4).

As an example of a case not solvable by either the high or
low visibility algorithms, consider an extinction distribution
for which I < 1. Ordinarily, this would be interpreted as a
typical low optical depth or high visibility situation, and so
Eq. (16) would be applied. But if the system constant C is
significantly in error, a realistic possibility, it may happen
that exp(—G@,,) < I, so that Eq. (16) fails completely. One
would, therefore, consider turning to Eq. (14), but this option
also would fail since for I < 1, Eq. (14) has no solution except
Q. = 0. The failure of Eq. (16) to provide a solution corre-
sponds graphically to having the line y; = Qy, situated higher

4 Q —

T—————
n 2)
o0 e o

\EL

Fig. 1. Plot of y; = Gy, and ys, given by the right-hand side of Eq.
(11), showing the location of the boundary values at the intersections
of the curves.
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Fig.2. Constant input distribution and the inversion solution hav-
ing an unrealistic drop-off with range. Both profiles can be used to
generate the same calibrated signal.

than the maximum in the curve ys. This suggests a simple
default strategy to resolve the impasse: make the estimate

Q, =9, (17)

in case the high and low visibility algorithms have no solu-
tions.

The ability of the above algorithms to estimate extinction
boundary values from input calibrated signals has been test-
ed numerically using several extinction distributions and
assumed errors in the system constant C. From these simu-
lations, selection rules for the various algorithms have been
obtained. They may be summarized as follows: The inver-
sion of a lidar signal begins by trying the high-visibility
algorithm first. It is considered successful if exp(—G,) > I
+ 0.01 [see Eq. (16)] and if the resulting o, > 0.01 and oo/oy,
< 50. Otherwise, a switch to the low-visibility algorithm
[Eq. (14)] is made, unless I < 1, in which case the default
algorithm [Eq. (17)] is used.

From the discussion so far the above selection rules should
seem reasonable, except perhaps for the criterion that Eq.
(16) is to be rejected if o, < 0.01 or oo/om > 50. These
slightly arbitrary conditions have come about somewhat par-
adoxically from trying to apply Eq. (16) to cases of high
extinction and are a consequence of the fact that in such
cases there are two possible roots to Eq. (16), one very small
and easily computed, and the other large and computational-
ly unreliable due to instabilities of the kind already dis-
cussed.

Probably the easiest way to appreciate the problem of
double-valuedness is to consider the lidar signal at the cross-
over point ro. At that location and if the assumption of
constant extinction on the interval (0,rp) is assumed, the
signal S can be seen from Eq. (2) to have the following form:

Sy = C + k Inoy — 2047, (18)

Therefore, gy is given by the intersection of the curve f1 = (S,
— C)/k = constant with the curve f2(x) = Inx — x/x,, where X
= k/2ryis thelocation of the maximum of f2. Thesituation is
entirely analogous to that illustrated in Fig. 1; and, in partic-
ular, there are two roots for 6o. Consequently, Eq. (16) may
converge to a o, corresponding to the physically unreason-
able very small root to Eq. (18). This in fact will happen for
large optical depths, because the high-visibility algorithm is
iterated starting with oy = 0, as described earlier. The
outcome can then be used as an indicator that the high-
visibility algorithm is inappropriate for the particular signal
being analyzed and should be rejected in favor of the low-
visibility algorithm.
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As asimple example of this behavior, consider the case of a
cosntant extinction distribution of magnitude 9.78/km. For
k = C =1 and with ry = 15 range point units, the signal value
computed from Eq. (18) for this distribution is Sg = 1.227, so
that f2(x) = Inx — x/4.76 = 0.227. This equation has the two
roots gg; = 1.85 and agp = 9.78. The high-visibility algorithm
converges to a boundary value corresponding to the smaller
root. The boundary value obtained in this fashion is ex-
tremelysmall: o, =8.8X10~6/km. Theresulting inversion
extinction profile assuming no errors in % or C is shown in Fig.
2. It should perhaps be emphasized that this profile repro-
duces the input signal just as well as the desired alternative
constant distribution ¢ = 9.78/km, and so can only be reject-
ed on the basis that it is physically implausible.

Numerical experiments with a wide range of extinction
distributions, and including errors in the calibration infor-
mation, show that the overall extinction boundary value
algorithm obtained through use of the selection rules is capa-
ble of providing better results than previously reported indi-
vidual estimation schemes.

Part of this research was performed under contract to the
U.S. Army Atmospheric Science Laboratory, White Sands
Missile Range, NM 88002.
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The paper! by Chylek et al. appeared recently in Applied
Optics. The internal electric field of a dielectric sphere is a
popular topic which has received a lot of attention in the
recent past.?® The purpose of this Letter is to comment on
cRertajn features of internal electric field intensity reported in

ef. 1.

We first note that in Ref. 1 light incident on a dielectric
sphere is assumed to be unpolarized. If the direction of
incident beam is taken to be the z axis, the unpolarized light
can be considered to be an incoherent equal mixture of light
polarized in the x and y directions. Since the x and y
directions for the polarization of incident light yield similar
results in the determination of electric field intensity |E[2, we
shall for the purpose of discussion assume that the incident



