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The familiar solution to the single-scattering lidar equa­

tion predicts extinction as a function of range in terms of (1) 
the relative signal strength and (2) a reference or boundary 
value of extinction that is present as an independent con­
stant of integration. For cases of low visibility the solution is 
only weakly dependent on this latter parameter, but it can 
become of critical importance for some circumstances of 
moderate to high visibility. 

Algorithms to estimate the extinction boundary value by 
making use of knowledge of the absolute power level of the 
return signal are available in the literature.1"3 This Letter 
presents an alternative set which has been selected on the 
grounds of simplicity and performance in numerical experi­
ments. The result is a combination of three models, one 
valid for cases of low optical depth, another suitable for most 
cases of moderate to large optical depth, and a third provided 
largely as a default procedure for somewhat anomalous situa­
tions that cannot be handled by either of the two principal 
algorithms. 

On making the usual assumption that the atmospheric 
backscatter and extinction coefficients, β and σ, are related 
according to a power law of the form 

where B depends on wavelength and various properties of the 
obscuring aerosol and k ≈ 1, the single-scattering lidar equa­
tion may be expressed in the form 

In this equation P(r) is the instantaneous power received 
from range r, and the system constant C is given by 

where P0 is the transmitted power, c is the velocity of light, r 
is the pulse duration, and A is the effective system receiver 
area. 

For constant k the stable solution to Eq. (2) is 

where Sm = S(rm), σm = σ(rm), and r ≤ rm.4 Note that the 
solution depends on both the relative signal, S - Sm, and the 
extinction boundary value σm; the latter makes its appear­
ance as an independent constant of integration, as described 
above. 

From Eq. (2) one can attempt to relate σm to the signal 
strength returned from the maximum useful range rm: 
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However, the contribution of the integral attenuation term 
over the interval (0,r0), where r0 is the point of transmitter 
and receiver beam overlap, is unfortunately unknown. Two 
previously made assumptions about this unknown attenua­
tion term are that (1) the extinction is constant over the 
interval (0,r0)2 and (2) the average extinction over (0,rm) is 
the same as that over (r0,rm)1. 

On the other hand, the contribution to the attenuation 
term over the interval (r0,rm) is easily expressed as a function 
of σm by integration of Eq. (4): 

In this last expression the extinction boundary value and the 
signal integral have been expressed in dimensionless form: 

Note that Eq. (9) provides a measure of optical depth over 
the interval (r0,rm). 

If we now impose the second of the assumptions described 
above concerning the attenuation to the crossover point, 
namely, that 

one arrives at the following equation for Ωm
1: 

where the constant Gm is given by 

Thus the desired Ωm is located at the intersections of the 
curve y1 = Gm with the curve (see Fig. 1) 

However, it can be seen from the figure that there are no 
roots if Gm is greater than the maximum of Eq. (11) occurring 
at 

Computational experience with the algorithm also shows it 
to be unreliable for some cases of low visibility. This might 
be expected from Fig. 1, since the intersection of the two 
curves for large Ωm occurs where they are nearly parallel; 
hence a small error in the estimated value of the system 
constant, for example, might produce a very large error in the 
root. 

Because of these difficulties (the possibility of there being 
no solution if the computed value of Gm is sufficiently in error 
and the possible error amplification in cases of large optical 
depth), it has been found useful to employ instead three 
separate estimation procedures, with each taylored for a 
range of parameters or set of conditions. For low visibilities, 
we note from Eq. (7) that the average value of extinction 
depends primarily on the relatively large magnitude of the 

signal integral I, so that an additional constraint is needed to 
select a unique boundary value of extinction. This suggests 
the simple approach of determining the boundary value in 
such cases by setting it equal to the average extinction. 
Then directly from Eq. (7) one obtains Ωm as the solution to 

It is easy to show that this equation always has a solution for I 
> 1 and that it may be obtained in a few iterations starting 
with an initial small value for Ωm. Any error in the estimate 
supplied by Eq. (14) will make little difference in the calcu­
lated visibility for the circumstances for which this particu­
lar algorithm is intended. 

For high visibilities the choice of σm influences σ(r) more 
strongly, there being insufficient optical depth for the well-
known self-convergence property of Eq. (4) to play a signifi­
cant role. Also, as can be seen from the large intersection 
angle of the curves in Fig. 1 for the case of the small root, 
errors in Gm will not be reflected as greatly amplified errors 
in the root. Hence an alternative to Eq. (14) is appropriate 
for high visibilities. Although Eq. (11) is suitable for this 
purpose, a slightly simpler algorithm may be obtained from 
Eq. (5) by using the previously mentioned alternative as­
sumption of constant extinction from the lidar to the cross­
over point. Then Eq. (5) may be expressed in the form 

This equation may now be solved for the desired extinction 
boundary value (in dimensionless form): 

This algorithm is very similar to Mulders's3 modification of 
the formulation of Ferguson and Stephens.2 

In general σ0 is not known unless σm is, but in practice this 
minor difficulty can be overcome through simple iteration of 
Eq. (16). For example, one may initially set σ0 = 0 and solve 
for σm; then from Eq. (4) evaluated at r0 a new value of σ0 is 
obtained, which may be substituted back into Eq. (16) and so 
forth. This procedure is successful in the presence of errors 
because of the stability of Eq. (4). 

As an example of a case not solvable by either the high or 
low visibility algorithms, consider an extinction distribution 
for which I < 1. Ordinarily, this would be interpreted as a 
typical low optical depth or high visibility situation, and so 
Eq. (16) would be applied. But if the system constant C is 
significantly in error, a realistic possibility, it may happen 
that exp(-G'm) < J, so that Eq. (16) fails completely. One 
would, therefore, consider turning to Eq. (14), but this option 
also would fail since for I < 1, Eq. (14) has no solution except 
Ωm = 0. The failure of Eq. (16) to provide a solution corre­
sponds graphically to having the line y1 = Ωm situated higher 

Fig. 1. Plot of y1 = Gm and y2, given by the right-hand side of Eq. 
(11), showing the location of the boundary values at the intersections 

of the curves. 
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Fig. 2. Constant input distribution and the inversion solution hav­
ing an unrealistic drop-off with range. Both profiles can be used to 

generate the same calibrated signal. 

than the maximum in the curve y2. This suggests a simple 
default strategy to resolve the impasse: make the estimate 

in case the high and low visibility algorithms have no solu­
tions. 

The ability of the above algorithms to estimate extinction 
boundary values from input calibrated signals has been test­
ed numerically using several extinction distributions and 
assumed errors in the system constant C. From these simu­
lations, selection rules for the various algorithms have been 
obtained. They may be summarized as follows: The inver­
sion of a lidar signal begins by trying the high-visibility 
algorithm first. It is considered successful if exp(-Gm ' ) > I 
+ 0.01 [see Eq. (16)] and if the resulting σm > 0.01 and σ0/σm 
< 50. Otherwise, a switch to the low-visibility algorithm 
[Eq. (14)] is made, unless I < 1, in which case the default 
algorithm [Eq. (17)] is used. 

From the discussion so far the above selection rules should 
seem reasonable, except perhaps for the criterion that Eq. 
(16) is to be rejected if σm < 0.01 or σ0/σm > 50. These 
slightly arbitrary conditions have come about somewhat par­
adoxically from trying to apply Eq. (16) to cases of high 
extinction and are a consequence of the fact that in such 
cases there are two possible roots to Eq. (16), one very small 
and easily computed, and the other large and computational­
ly unreliable due to instabilities of the kind already dis­
cussed. 

Probably the easiest way to appreciate the problem of 
double-valuedness is to consider the lidar signal at the cross­
over point r0. At that location and if the assumption of 
constant extinction on the interval (0,r0) is assumed, the 
signal S can be seen from Eq. (2) to have the following form: 

Therefore, σ0 is given by the intersection of the curve ƒ1 = (S0 
- C)/k = constant with the curve f2(x) = lnx - x/xc, where xc 
= k/2r0 is the location of the maximum ofƒ2. The situation is 
entirely analogous to that illustrated in Fig. 1; and, in partic­
ular, there are two roots for σ0∙ Consequently, Eq. (16) may 
converge to a σm corresponding to the physically unreason­
able very small root to Eq. (18). This in fact will happen for 
large optical depths, because the high-visibility algorithm is 
iterated starting with σ0 = 0, as described earlier. The 
outcome can then be used as an indicator that the high-
visibility algorithm is inappropriate for the particular signal 
being analyzed and should be rejected in favor of the low-
visibility algorithm. 
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As a simple example of this behavior, consider the case of a 
cosntant extinction distribution of magnitude 9.78/km. For 
k = C = 1 and with r0 = 15 range point units, the signal value 
computed from Eq. (18) for this distribution is S0 = 1.227, so 
that ƒ2(x) = lnx - x/4.76 = 0.227. This equation has the two 
roots σ01 = 1.85 and σ02 = 9.78. The high-visibility algorithm 
converges to a boundary value corresponding to the smaller 
root. The boundary value obtained in this fashion is ex­
tremely small: σm = 8.8 × 10 -6/km. The resulting inversion 
extinction profile assuming no errors in k or C is shown in Fig. 
2. It should perhaps be emphasized that this profile repro­
duces the input signal just as well as the desired alternative 
constant distribution σ = 9.78/km, and so can only be reject­
ed on the basis that it is physically implausible. 

Numerical experiments with a wide range of extinction 
distributions, and including errors in the calibration infor­
mation, show that the overall extinction boundary value 
algorithm obtained through use of the selection rules is capa­
ble of providing better results than previously reported indi­
vidual estimation schemes. 

Part of this research was performed under contract to the 
U.S. Army Atmospheric Science Laboratory, White Sands 
Missile Range, NM 88002. 
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