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In a recent article in this journal,! a lidar inversion
scheme was presented which utilizes only relative changes in
the backscattered signal to produce estimates of atmospheric
extinction as a function of range. It was also pointed out that
better results could be obtained if one could make use of cal-
ibration information and/or other independent measurements
to determine reference or boundary values of extinction Om
more accurately. This Letter describes some characteristic
features of a particular boundary value model for estimating
om based on knowledge of (1) lidar system constants, (2) rel-
ative signal strength, and (3) the relationship between the
backscatter and extinction coefficients.

If one assumes that the atmospheric backscatter and ex-
tinction coefficients, 8 and o, respectively, are related ac-
cording to a power law of the form

8= Ba*, (1)

where B and % depend on wavelength and various properties
of the obscuring aerosol, the single-scattering lidar equation
may be expressed in the form

8(r) = In[r2P(r)] = Cy + k Ing — 2 f " gdr. @)
0
In this equation P(r) is the instantaneous power received from
ranger, and the constant C; is given by Cy = In(0.5PyBcTA),
where Py is the transmitted power, ¢ is the velocity of light,
7 is the pulse duration, and A is the effective system receiver
area.
For constant k a stable solution to Eq. (2) is

xp[(S = S /k
i exp[(S — Sn)/k] ) @)
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where S, = S(rp,), 61y = 0(rp), and r < r,,.1 Note that to
apply this solution one must know o, as well as the relative
signal S — S,,. For optical depths greater than unity, an
adequate estimate for o,, can usually be obtained from the
well-known slope method?2 as minus one half of the average
slope of the S(r) curve. However, this approach becomes
often quite inaccurate for less turbid atmospheres.

An obvious plausible strategy for obtaining an improved
estimate of o, is to make use of the magnitude of the return
signal S in addition to its relative strength S — S over the
range of interest. However, a characteristic difficulty with
Eq. (2) arises in this connection, namely, that it can be applied
only for r = ro, where rg is the point of transmitter and receiver
beam overlap. Thus in effect the receiver area A becomes an
unknown function of r for r < ro, and consequently it is im-
possible to solve for o over (0,ry). In view of this limitation,
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shortened (for those who do).

an appropriate modification of the integral term in Eq. (2) is
in order: Impose the additional constraint that the average
extinction over (0,r,,) is the same as that over (ro,rm); i.e.,
set

T = r f'"' adr’ = (rp — ro)=! f”" odr' = (om),  (4)
0 i

0

so that for r = r,, Eq. (2) becomes
Sm=Ci+klnoy, — 2rp{an). (5)

The replacement of G,,, by (0,,) will introduce a negligible
error even for many strongly heterogeneous distributions of
0, s0 long as the overlap point ry is small compared with the
maximum useful range rp,.

Now by integrating Eq. (3) over (r¢,rn) one can obtain an
expression for (o,, ) in terms of ¢,,,; on substituting the result
into Eq. (5) an equation relating ¢,, to known quantities is
finally obtained. In dimensionless form the relationship is

T84+ 100, 6)
m — rOJ

Gm =InQ,,

where Q, = 20y, (r ~ ro)/k (a measure of optical depth),
1= (rm=~ro)™t [ "expl(S = S,,)/kdr,
(Fne = ro} J:O exp]( Vk)dr

= (Sm T Ci) +
k
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Since the quantity (c7B)1/* has the dimensions of a length (k
is dimensionless), Eq. (8) shows explicitly that G,, is dimen-
sionless, as is necessary for consistency with Eq. (6).

It is instructive to regard Q,, satisfying Eq. (6) as the roots
corresponding to the intersection of the curve y;(Q) = G,, =
constant with the curve

I {Q(rmk_ rﬁ}} 7

Gﬂl

(8)

y2(Q) = InQ - —"In(1 + Q). )
Erm e rﬂ)

This latter curve has a single maximum at Q, = (r,, — ro)/rol.
Also, one finds that the slope y, > 0 and is monotonic de-
creasing for 2 < Q,, while y, <0 for @ > ., with the limit y,
—0as ) — =, Furthermore, from Egs. (2), (6), and (7) one
can show that yo(Q.) > G,, whenever

(=1 [ aly ]
o/l = 1) l(a. - 1)J !

where (0, ) = 2(rp = ro){om)/k, U = 2(rp, — ro)Tm/k, and
a=rp/ro.

Since typically « 2 2, Eq. (10) will hold almost always, and
hence there will generally be two roots Q{? satisfying y[Q{L?)]
= G (see the schematic depiction in Fig. 1). This means that
both high and low visibility boundary values of extinction can
be found for a given return signal, and so the question arises
as to how one can discriminate between the two possibilities.
Although it is reasonable to expect that the proper choice will

exp{Qn) <1+

(10)
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Fig. 1. Plot of the function () showing the location of the roots

to Eq. (6).

be evident by direct observation under many circumstances,
on some occasions (e.g., for highly variable obscurations, under
nighttime conditions, or for unattended system operation) the
correct choice may not be obvious. Of course, if one knows
G,, accurately, presumably the scattering medium has already
been characterized as of high or low visibility type, so that
further decisions regarding the choice of root may be super-
fluous, depending largely on how well Eq. (4) reflects the true
conditions. If Eq. (4) is a poor approximation, and/or G, is
not known accurately, the ambiguity in the choice of root
cannot in principle be removed within the scope of the method
described here.

As to the effects of errors 6G,,, on the estimate for o,,, from
Eq. (6) one finds that for a high-visibility situation the induced
fractional error is just 66V/o'V) ~ 6G,,, whereas for low visi-
bilities it is opPosite in sign and amplified by the factor (r,,
— ro)re: 662/6 ~ —(rp, — ro)8Gn/ro. Because of this
behavior a simple half-interval method constitutes an ade-
quate algorithm for locating Q). For 22 a slope extrapola-
tion approach such as the Regula Falsi method3 is more effi-
cient.

Results of numerical simulations wherein the constant G,
is known indicate that excellent estimates of ¢, may be ob-
tained for optical depths either much greater or much less
than unity (i.e., @ > 1 or Q,, < 1) so long as o does not vary
systematically by more than a few orders of magnitude over
(ro,rm) for a 2 2. If Q,, = O(1), it may or may not prove dif-
ficult to choose the most nearly correct of the two roots, de-
pending on the distribution or o(r). The most difficult cases
are for monotonic decreasing ¢ with r, and this is due pri-
marily to the error introduced by Eq. (4) for such distribu-
tions, especially for circumstances limiting « to relatively
small values.

Part of this research was conducted while the author was
a Senior Research Associate of the National Research
Council.
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Although the attenuation of downwelling irradiance in
natural waters cannot be confidently taken to be constant
until a subsurface asymptotic radiance distribution is estab-
lished (Preisendorfer,! Kirk?), the use of an average irradiance
attenuation coefficient (k4y) to a given irradiance level (X%)
should not result in any great loss of generality. For such an
assumption, the depth (Z) of this given subsurface irradiance
level may be readily obtained from

1 100
VA ™ In X (1)

For two distinct values of kay (say, kav1 and R,y2), the ratio
of the corresponding depths (Z; and Z5) to the equivalent
subsurface irradiance level is given by

Zi_kac
ZQ kavI

Recently we presented? the relative depths Z(w,0,F) of the
1% subsurface irradiance level as a function of the solar zenith
angle 8, the fraction F of the above surface incident radiation
that is diffuse, and the scattering albedo @ for @ = 0.6, 0.75,
and 0.9 (see Tables ITI, IV, and V of Jerome et al.3). From the
work of Whitney* (which assumed no scattering phenomena
oceurring within the water column) a similar table may be
constructed for w = 0. Table I lists the resulting relative
depths Z(0,6,F) of the 1% subsurface irradiance level as a
function of # and F for w = 0. For convenience, Tables I, I1I,
and IV (taken from Tables III, IV, and V of our previous
work?3) are reproduced to illustrate the comparable values for
w = 0.6, w = 0.75, and w = 0.9, respectively.

For a particular water mass w, the relationship between &,y
and kayo (defined by two sets of # and F values) is given by

kii. = kﬂv[wyolrpl} oL Z(m,ﬂg,Fg)
kavs  kaulw,02,F3)  Z(w,01,F1)

and may be applied to the values listed in Table I, Table II,
Table III, or Table IV. Interpolation for values of & and F not
listed in the tables should not result in inaccuracies exceeding
~5%, the largest inaccuracies being associated with midrange
solar zenith angles, totally direct incident radiation, and low
scattering albedo.

Thus, if an in situ determination of kay to the 1% subsurface
irradiance level is performed for a particular water mass w and
a particular set of conditions 6, and F, the absolute value of
k. for that water mass can be estimated for any other set of
f and F conditions from Eq. (3) and the appropriate values
of Z(w,0,F).

However, since the values of Z(w,0,F) listed in Tables I-IV
have been normalized to Z(w,0,0), the absolute values of
Z(w,0,0) must be known before intercomparisons between
distinct water masses (i.e., water masses of different @ values)
may be considered. Alternatively, the absolute value of
kav(@,0,0) for each water mass must be known.

Kirk? has utilized a Monte Carlo simulation of the propa-
gation of radiation in natural waters to estimate the influence

(2)

(3)

15 February 1983 / Vol. 22, No. 4 / APPLIED OPTICS 515



