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In a recent article in this journal,1 a lidar inversion 
scheme was presented which utilizes only relative changes in 
the backscattered signal to produce estimates of atmospheric 
extinction as a function of range. It was also pointed out that 
better results could be obtained if one could make use of cal
ibration information and/or other independent measurements 
to determine reference or boundary values of extinction σm 
more accurately. This Letter describes some characteristic 
features of a particular boundary value model for estimating 
σm based on knowledge of (1) lidar system constants, (2) rel
ative signal strength, and (3) the relationship between the 
backscatter and extinction coefficients. 

If one assumes that the atmospheric backscatter and ex
tinction coefficients, β and σ, respectively, are related ac
cording to a power law of the form 

where B and k depend on wavelength and various properties 
of the obscuring aerosol, the single-scattering lidar equation 
may be expressed in the form 

an appropriate modification of the integral term in Eq. (2) is 
in order: Impose the additional constraint that the average 
extinction over (0,rm) is the same as that over (r0,rm); i.e., 
set 

so that for r = rm Eq. (2) becomes 

The replacement of σm by (σm) will introduce a negligible 
error even for many strongly heterogeneous distributions of 
σ, so long as the overlap point r0 is small compared with the 
maximum useful range rm. 

Now by integrating Eq. (3) over (r0,rm) one can obtain an 
expression for < σm> in terms of σm; on substituting the result 
into Eq. (5) an equation relating σm to known quantities is 
finally obtained. In dimensionless form the relationship is 

where Ωm ≡ 2σm(rm - r0)/k (a measure of optical depth), 

In this equation P(r) is the instantaneous power received from 
range r, and the constant C1 is given by C1 = In(0.5P0BcτA), 
where P 0 is the transmitted power, c is the velocity of light,' 
Τ is the pulse duration, and A is the effective system receiver 
area. 

For constant k a stable solution to Eq. (2) is 

Since the quantity (cτB)1/k has the dimensions of a length (k 
is dimensionless), Eq. (8) shows explicitly that Gm is dimen
sionless, as is necessary for consistency with Eq. (6). 

It is instructive to regard Ωm satisfying Eq. (6) as the roots 
corresponding to the intersection of the curve y1(Ω) = Gm = 
constant with the curve 

where Sm = S(rm), σm = σ(rm), and r ≤ rm.1 Note that to 
apply this solution one must know σm as well as the relative 
signal S - Sm. For optical depths greater than unity, an 
adequate estimate for σm can usually be obtained from the 
well-known slope method2 as minus one half of the average 
slope of the S(r) curve. However, this approach becomes 
often quite inaccurate for less turbid atmospheres. 

An obvious plausible strategy for obtaining an improved 
estimate of σm is to make use of the magnitude of the return 
signal S in addition to its relative strength S - Sm over the 
range of interest. However, a characteristic difficulty with 
Eq. (2) arises in this connection, namely, that it can be applied 
only for r ≥ r0, where r0 is the point of transmitter and receiver 
beam overlap. Thus in effect the receiver area A becomes an 
unknown function of r for r < r0, and consequently it is im
possible to solve for σ over (0,r0). In view of this limitation, 

This latter curve has a single maximum at Ωc = (rm - r0)/r0I. 
Also, one finds that the slope y'2 > 0 and is monotonic de
creasing for Ω < Ωc, while y2 < 0 for Ω > Ωc, with the limity2 
→ 0 as Ω → ∞. Furthermore, from Eqs. (2), (6), and (7) one 
can show that y2(Ωc) > Gm whenever 

where <Ωm) ≡ 2(rm - r0)(σm)/k, Ωm ≡ 2(rm - r0)σm/k, and 
α ≡ rm/r0. 

Since typically α > 2, Eq. (10) will hold almost always, and 
hence there will generally be two roots Ωm

1,2) satisfying y2[Ωm
1,2)] 

= Gm (see the schematic depiction in Fig. 1). This means that 
both high and low visibility boundary values of extinction can 
be found for a given return signal, and so the question arises 
as to how one can discriminate between the two possibilities. 
Although it is reasonable to expect that the proper choice will 
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Fig. 1. Plot of the function y2(Ω) showing the location of the roots 
to Eq. (6). 

be evident by direct observation under many circumstances, 
on some occasions (e.g., for highly variable obscurations, under 
nighttime conditions, or for unattended system operation) the 
correct choice may not be obvious. Of course, if one knows 
Gm accurately, presumably the scattering medium has already 
been characterized as of high or low visibility type, so that 
further decisions regarding the choice of root may be super
fluous, depending largely on how well Eq. (4) reflects the true 
conditions. If Eq. (4) is a poor approximation, and/or Gm is 
not known accurately, the ambiguity in the choice of root 
cannot in principle be removed within the scope of the method 
described here. 

As to the effects of errors δGm on the estimate for σm, from 
Eq. (6) one finds that for a high-visibility situation the induced 
fractional error is just δσ(1)

m/σ(1)
m ~ δGm , whereas for low visi

bilities it is opposite in sign and amplified by the factor (rm 
- r0)/r0: δσ(2)

m/σ(2)
m ≈ -(rm - r0)δGm/r0. Because of this 

behavior a simple half-interval method constitutes an ade
quate algorithm for locating Ω(1)

m. For Ω(2)
m a slope extrapola

tion approach such as the Regula Falsi method3 is more effi
cient. 

Results of numerical simulations wherein the constant Gm 
is known indicate that excellent estimates of σm may be ob
tained for optical depths either much greater or much less 
than unity (i.e., Ωm » 1 or Ωm « 1) so long as σ does not vary 
systematically by more than a few orders of magnitude over 
(r0,rm) for α ≥ 2. If Ωm = O(l), it may or may not prove dif
ficult to choose the most nearly correct of the two roots, de
pending on the distribution or σ(r). The most difficult cases 
are for monotonic decreasing σ with r, and this is due pri
marily to the error introduced by Eq. (4) for such distribu
tions, especially for circumstances limiting α to relatively 
small values. 

Part of this research was conducted while the author was 
a Senior Research Associate of the National Research 
Council. 
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